Power Consumption: Docked

To start things off, I wanted to see how much power the Switch drew while docked. This is broken down to a fully charged Switch – so that we can infer just how much power the Switch system (sans display) is drawing to run – and then again with a Switch under 20% battery capacity so that it needs to charge as well. All of this is measured by letting the Switch load from a save in The Legend of Zelda: Breath of the Wild, which according to Nintendo’s battery life estimates, is likely the most power-intensive of the launch games. The following values are all averages over 2 minutes.

Switch Power Consumption: Docked
  On (Fully Charged) On (Discharged) Charging (Sleep)
Switch Only 11W
(14.8V @ 0.74A)
15.7W
(14.8V @ 1.06A)
9.8W
(14.8V @ 0.66A)
Switch w/Joy-Cons 11W
(14.8V @ 0.74A)
16.5W
(14.7V @ 1.12A)
12.1W
(14.7V @ 0.82A)

With the Switch charged and running Zelda in its docked configuration, it’s drawing on average 11 Watts of power. The dock itself is consuming a bit of this energy to power its DisplayPort to HDMI converter, but it’s safe to assume that virtually all of that power is going to the Switch itself. And while I didn’t pull noise measurements on the Switch, while the console’s fan was active, it was holding at a fairly low speed, judging from the softness of the sound.

Letting the Switch discharge and loading up Zelda again finds that power consumption has (unsurprisingly) increased, to 15.7W. Throwing on the partially discharged joy-cons bumps that up a bit further to 16.5W, coming fairly close to the official 18W limit of the dock. One thing to keep in mind here is that if we subtract out the 11W from earlier, we only end up with 4.7W left to charge the Switch’s battery.

Finally, if we turn the console off and just let it charge, we find that the Switch + dock draws 9.8W. This is nearly twice the amount of leftover power the Switch had available to charge its battery with when it was docked and turned on. Meanwhile, adding the joy-cons to the mix to recharge as well brings the total power consumption up to 12.1W. The takeaway? The Switch can recharge fairly quickly, but only if it’s not turned on. If it is on, it will still recharge in the dock, but at around half the rate.

Power Consumption: Undocked

The next question of course is how this compares to power consumption when undocked, so let’s find out.

Switch Power Consumption: Undocked
  On (Fully Charged) On (Discharged) Charging (Sleep)
Switch Only
(Max Brightness)
8.9W
(14.8V @ 0.6A)
16.1W
(14.6V @ 1.1A)
9.8W
(14.8V @ 0.66A)
Min Bright: 7.1W
(14.8V @ 0.48A)
Switch w/Joy-Cons 8.9W
(14.8V @ 0.6A)
17.7W
(14.6V @ 1.21A)
12.1W
(14.7V @ 0.82A)

Starting off again with a fully-charged Switch, with the display at minimum brightness we’re down to 7.1W, or 3.9W less than when it was docked. Considering that some of this power is going to screen and that we can’t shut it off, we’re easily looking at a 5W+ reduction in SoC power going from docked mode to undocked mode. Meanwhile cranking up the brightness to maximum increases the power consumption to 8.9W, or about 25%. In practical terms this means that going brighter definitely has an impact on the Switch’s battery life, but even if you drop to minimum brightness, you’re still only going to cut power consumption by 20%. So don’t feel bad playing the console with a higher brightness; lowering the brightness won’t vastly increase the runtime of the console.

Otherwise, keep in mind the 8.9W number. This is (roughly) the maximum power draw for gaming on the console when it’s undocked. It should also be noted that the Switch will try to avoid charging the joy-cons unless it too is being charged, so the runtime impact of the joy-cons will typically be nil when the Switch is running on its internal battery.

After letting the Switch discharge, the power numbers for operating the Switch while it’s turned on and charging are not all that different from earlier when the console was docked. With the brightness at maximum – to give us the Switch’s maximum power draw undocked - the Switch draws 16.1W in this scenario. Throwing on the joy-cons adds another 1.6W, bringing the total to 17.7W. This is the single highest power draw number that I recorded, and it’s interesting to note that it’s still a hair under the 18W limit stamped on the Dock, indicating just how accurate that value is.

Finally, sleeping the Switch to let it charge is identical its power consumption while docked. The Switch will draw 9.8W to charge itself, and 12.1W with the joy-cons attached. Turning the Switch off entirely does change the charging rate a bit, but not significantly: it goes from 9.8W to 10.6W.

Power Consumption: USB Power Bank

Last, and what I suspect is the biggest question about the Switch’s power consumption, is powering the console from a USB battery pack/power bank/joule jar. So to test this I grabbed the biggest pack I had on hand, a Maximas Xtron, and gave it a shot.

Switch Power Consumption: Undocked w/Battery Pack
  On (Fully Charged) On (Discharged) Charging (Sleep)
Switch Only
(Max Brightness)
8.9W
(4.68V @ 1.9A)
9.0W
(4.68V @ 1.92A)
8.8W
(4.68V @ 1.88A)
Switch w/Joy-Cons 9.1W
(4.68V @ 1.94A)
9.1W
(4.68V @ 1.94A)
N/A

Plugging the Switch into a power bank finds that a good power bank can provide enough power to run the Switch, but that’s it. Whether discharged or full, the Switch doesn’t pull more than about 9.1W from a battery pack. This is just over the 8.9W maximum operational power consumption level we established earlier. And even after letting the Switch run for a couple of hours off of a power bank and starting from a full charge, it’s still fully charged while the power bank is slowly discharging.

Notably, the Switch can’t draw more than the aforementioned 9.1W from the Xtron, or indeed any other tablet-sized power bank I’ve thrown at the Switch. In fact every 5V-capable USB-C power source I’ve thrown at the Switch maxes out at this same point. At 5V, the Switch doesn’t seem to be able to draw more than 2 Amps.

The takeaway from all of this is that while this is by no means an exhaustive test, what I’ve found is that any good power bank designed to power tablets will be sufficient to power the Switch. So long as a bank can deliver 5V @ 2A or better, then it can power Nintendo’s console. (And if you're looking for buying advice, while I haven't yet had a chance to test it, RAVPower recently started shipping a rather sizable 99 Whr power bank that supports up to 20V)

The one downside is that due to the inner-workings of the USB Power Delivery specification (more on that in a sec), the Switch apparently can’t pull enough energy from standard 5V-output power banks to meaningfully recharge its battery while gaming. So with a 5V power bank, if your Switch is fully depleted, you’ll need to stay attached to the bank the entire time you’re playing, or take a break and let the bank recharge the Switch while it’s sleeping. In the case of the latter, the recharge rate should only be a bit lower than if you had used the AC adapter.

Playing With Power: Specifications & Expectations Getting Nerdy: USB Power Delivery, Type-C Cables, & Third Party Adapters
Comments Locked

61 Comments

View All Comments

  • yhselp - Wednesday, March 8, 2017 - link

    If Switch draws 8.9W how can it last 2.5 hrs on a 16Whr battery?
  • zodiacsoulmate - Wednesday, March 8, 2017 - link

    Good question haha
  • yhselp - Thursday, March 9, 2017 - link

    An honest one, too. I don't doubt the validity of Ryan's report, nor those that have tested and confirmed Switch running Zelda at max brightness for over 2.5 hrs. There's something I don't understand. Here's hoping we get an answer.
  • Ryan Smith - Saturday, March 11, 2017 - link

    Power conversion inefficiency, for a start. That 15V has to be converted internally to a number of other voltages. The actual intensity of the workload will also vary a bit; I grabbed an early area with a lot of transparency specifically because that tends to be especially hard on the GPU side of things.
  • yhselp - Monday, March 13, 2017 - link

    Thanks for replying. Hoping Nintendo releases Switch XL with a FinFET SoC, bigger screen, and much better battery life.
  • Vash63 - Friday, March 10, 2017 - link

    Is there a measure of how much power this draws while in sleep mode when NOT charging? Would be useful to see if there's any long term power draw in sleep mode.
  • Ryan Smith - Saturday, March 11, 2017 - link

    It's so low that I'd need a multimeter to measure it correctly. The power draw of the USB-C power meter becomes the dominant load.

    If there is any power draw, I'd say it's low enough to be inconsequential. The Switch does slowly draw down the battery over time, but baring wake-up events (e.g. firing up the WiFi radio) we're talking about a process that would take weeks.
  • IanAugust - Saturday, March 11, 2017 - link

    One question. Is it common for power banks to cause damage to your devices battery. I purchased a imuto taurus x4 20000mAh power bank. I've contacted their support to see if it was possible that the power bank could power the switch while I was playing it (or at the very least) slow the battery drain a bit.

    But I got some unclear information saying that using the device while the power bank is charging it would cause damage to the battery (not clear which battery they were implying). Is this common or normal to not be allowed to use a device while it's being charge by the power bank?

    Thanks!
  • azazel1024 - Monday, March 13, 2017 - link

    One thing to throw out, speaking of battery pack charging ability, go shorter and higher gauge cables if you can manage it. Obviously a 4" cable probably isn't practical for charging the switch, but if you can manage with a 1ft cable over a 3ft, let alone a 6ft cable, go shorter.

    2 Amps is a fair amount of current to pull on a tiny conductors. A lot of cables only have 28ga data wires and 26ga power wires for USB 2 cables. A few premium wires are 28/26. On a 6ft wire at 2 amps you've got nearly 20% loss due to voltage drop/heat dissipation.

    Going up to that premium 24ga power wires and you are talking only a 12.6% drop. Still substantial, but a lot better than wasting 1 in 5 watts.

    Go to a 3ft, or even better a 1ft wire and you could be down to a ~2% loss on a short, thick wire.

    That is the biggest reason you almost never see 5v charging higher than 2 amps. You end up getting the wires rather warm once you start pushing that much amperage through them.

    By comparison, for residential 120/240v wiring you generally want to look at increasing voltage or wire gauge if your calculations come in above a 2% voltage drop...and here we are in USB town tolerating a 20+% drop.
  • extide - Sunday, May 7, 2017 - link

    ..and that's why the new higher voltage modes were introduced.

Log in

Don't have an account? Sign up now