System Performance

Not all motherboards are created equal. On the face of it, they should all perform the same and differ only in the functionality they provide - however, this is not the case. The obvious pointers are power consumption, but also the ability for the manufacturer to optimize USB speed, audio quality (based on audio codec), POST time and latency. This can come down to the manufacturing process and prowess, so these are tested.

For X570 we are running using Windows 10 64-bit with the 1903 update as per our Ryzen 3000 CPU review.

Power Consumption

Power consumption was tested on the system while in a single ASUS GTX 980 GPU configuration with a wall meter connected to the Thermaltake 1200W power supply. This power supply has ~75% efficiency > 50W, and 90%+ efficiency at 250W, suitable for both idle and multi-GPU loading. This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency. These are the real world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

While this method for power measurement may not be ideal, and you feel these numbers are not representative due to the high wattage power supply being used (we use the same PSU to remain consistent over a series of reviews, and the fact that some boards on our test bed get tested with three or four high powered GPUs), the important point to take away is the relationship between the numbers. These boards are all under the same conditions, and thus the differences between them should be easy to spot.

Power: Long Idle (w/ GTX 980)Power: OS Idle (w/ GTX 980)Power: Prime95 Blend (w/ GTX 980)

The power consumption when compared with X470 and B450 motherboards, we need to be aware of the difference in the TDP of the chipsets; 11 W for the X570 against the 4.8 W of the X470 and B450. Despite this, the MSI MEG X570 Ace actually performed better than the GIGABYTE X470 Gaming 7 model in both idle, and long idle power states. When placed under full load, the X570 Ace as expected ploughed ahead in terms of power consumption with a total of 147 W in our Prime95 blend test.

Non-UEFI POST Time

Different motherboards have different POST sequences before an operating system is initialized. A lot of this is dependent on the board itself, and POST boot time is determined by the controllers on board (and the sequence of how those extras are organized). As part of our testing, we look at the POST Boot Time using a stopwatch. This is the time from pressing the ON button on the computer to when Windows starts loading. (We discount Windows loading as it is highly variable given Windows specific features.)

Non UEFI POST Time

In our POST time test, the MSI MEG X570 Ace took noticeably longer to boot into Windows 10 by a good 10 seconds which is slightly disappointing. Even disabling networking and audio controllers, we only managed to shave just under 2 seconds off the POST time compared with default settings applied.

DPC Latency

Deferred Procedure Call latency is a way in which Windows handles interrupt servicing. In order to wait for a processor to acknowledge the request, the system will queue all interrupt requests by priority. Critical interrupts will be handled as soon as possible, whereas lesser priority requests such as audio will be further down the line. If the audio device requires data, it will have to wait until the request is processed before the buffer is filled.

If the device drivers of higher priority components in a system are poorly implemented, this can cause delays in request scheduling and process time. This can lead to an empty audio buffer and characteristic audible pauses, pops and clicks. The DPC latency checker measures how much time is taken processing DPCs from driver invocation. The lower the value will result in better audio transfer at smaller buffer sizes. Results are measured in microseconds.

Deferred Procedure Call Latency

We test DPC at default settings, out of the box, and the MSI MEG X570 Ace performs marginally better than the GIGABYTE X470 Gaming 7, while ASRock models do generally tend to do a little better in this test.

Board Features, Test Bed and Setup CPU Performance, Short Form
Comments Locked

92 Comments

View All Comments

  • Targon - Thursday, July 18, 2019 - link

    If you are looking to install a $500 CPU into a sub-$200 motherboard, you have a set of misplaced priorities. A low-end B350 motherboard may not have the VRMs to support the 105W processors, so you have to expect issues there. Also, many motherboard companies have been slacking when it comes to releasing AGESA 1.0.0.3ab based BIOS updates for older motherboards(Asus really needs to get its act together).
  • 29a - Thursday, July 18, 2019 - link

    I wouldn't worry about stability or performance putting a 3700x in my $74 motherboard. You just need to make sure the CPU has been qualified by the vendor first and have a good quality power supply.
  • Death666Angel - Friday, July 19, 2019 - link

    "you have a set of misplaced priorities" Or maybe you don't do your research properly? Why should I spend money on features I don't use? A lot of sub $100 motherboards support the new 12 core and the VRMs are fine. Some will even support the 16 core and depending on air flow the VRM will still be fine. If you know what you are doing, there is no need to overspend on the motherboard "just to be safe".
    Some people also have different need than you. I have an mATX case and want to keep it (ITX is too restrictive and ATX is too large for my tastes). The most expensive mATX motherboards with an X370 or B450 (only one X470 board from AsRack for workstations) is the ASUS TUF 450M-Pro (sub $100) and that is probably worse than the Mortar line from MSI unless you need a very specific feature. I could go ITX but then lose 2 DIMM slots, M.2 support is more limited, VRM support suprisingly is pretty decent. But I also lose the possibility of using an extra x4 or x1 slot for future upgrades (more USB lanes, LAN card, SATA ports). I've had instances where the onboard LAN or a couple USB ports died. It's handy to have some expansion capabilities if you have the room. If I don't need the internal power, reset buttons, why pay for them? If I don't need guaranteed 4600+ MHz, why pay for it? If I don't need ALC1220, why pay for it? If I don't need more than 8 USB ports on the IO panel or more than 1 LAN port, why pay for it? Often times you get more features, but not necessarily better or more useful features when you step up in pricing. The blanket statement I quoted is really kind of ignorant.
  • jabber - Thursday, July 18, 2019 - link

    Shhhh remember these sites have to justify their existence by pushing the concept of market churn even though most cases of tech were long since satisfied and we are largely just reheating leftovers for the past 10 years. These reviews really do cater to a ever dwindling number of tech users.
  • satai - Thursday, July 18, 2019 - link

    ECC support?
  • Targon - Thursday, July 18, 2019 - link

    There's been ECC support on motherboards since the first generation Ryzen showed up.
  • satai - Friday, July 19, 2019 - link

    Not every mobo has it official / was tested.
  • Death666Angel - Friday, July 19, 2019 - link

    The time it took to write those comments, you could have visited the website and look at the manual and provide a service to everyone.
    Here:
    "Supports non-ECC UDIMM memory
    Supports ECC UDIMM memory (non-ECC mode)
    Supports un-buffered memory"
  • Jansen - Friday, July 19, 2019 - link

    So that would be a no LOL
  • Dug - Thursday, July 18, 2019 - link

    Please test the components of the motherboard, it's a motherboard review. Everyone can stick a cpu on the board and run tests. But we want to see if there are any issues or performance issues with the USB, network, sound, etc.

Log in

Don't have an account? Sign up now