Calxeda feels that the ECX-2000 at 1.8 GHz is competitor of the C2530 1.7 GHz (2 GHz Turbo, 4 cores, 9W TDP). If we look at Intel's SKUs, we noticed that the C2730 1.7 GHz (2 GHz Turbo, 8 cores, 12W TDP) might be also be a close competitor. So we list the ECX-1000 (the previous Calxeda SoC), the ECX-2000 and the two closest Intel Atom competitors. The "integrated" part is a bit short on details, but it is out of the scope of the article to discuss the different levels of I/O integration. We'll discuss that in a later article.

CPU Atom
ECX-1000 Atom
ECX-2000 Atom
Launch Date Q3 2012 Q2 2012 Q3 2013 Q4 2013 Q3 2013
Process Technology 32 nm 40 nm 22 nm trigate 28 nm 22 nm trigate
2 + 2 logical (SMT)

4 physical

4 physical

4 physical
8 physical
Clockspeed  2 GHz 1.4 GHz 1.7/2 GHz 1.8 GHz 1.7/2 GHz
L1-Cache (per core)
24/32 KB D/I
2x 0.5 MB
32/32 KB D/I
4 MB
24/32 KB D/I
2x1 MB
32/32 KB D/I
4 MB
24/32 KB D/I
4x1 MB
Memory controller Single Channel
64-bit Dual Channel
128-bit Dual Channel
Fastest Supported RAM DDR3 at 1.33 GT/s DDR3 at 1.33 GT/s DDR3 at 1.6 GT/s DDR3 at 1.6 GT/s DDR3 at 1.6 GT/s
Addressing 64 bit 32 bit 64 bit 32 bit with LPAE 64 bit
Max RAM 8 GB 4 GB 64 GB 16 GB 64 GB
Integrated PCIe Yes Yes Yes Yes Yes
Integrated Network No Yes Yes Yes Yes
Integrated SATA No Yes Yes Yes Yes
Typical Server node Power usage 20W (*) +/- 8 W 15-18W ?
12-16W ? (**) +/- 20W (*)

(*) Based upon Intel's "22 nm Intel Atom server SoCs Performance Overview"
(**) Rough estimates

Although the Atom S1260 had a TDP of only 8.5W, the power numbers were simply not comparable to the other SoCs as the S1260 needed more additional chips to perform the same tasks. In practice this means  that a server node based up on the S1260 need just as much power as the 12W TDP Atom C2730.

The performance/watt of the ECX-2000 SoC has probably not made a giant leap over the predecessor but the overall server efficiency should improve significantely as Calxeda also implemented Energy Efficient Ethernet (EEE) and other tricks to reduce the energy consumption of the "Fleet Fabric". And the point is of course that the number of applications where the performance per node is "good enough" has increased significantely.

The Atom C2000 can support up to 64 GB, where the ECX-2000 is limited to 16 GB. The trade-off is that the C2000 uses up to 4 DIMM slots, where the ECX-2000 is limited to one. Obviously, more DIMM slots offer more flexibility but also make the server node larger and consume more energy. 


The Calxeda ECX-2000 How good will the EnergyCore ECX-2000 be?
Comments Locked


View All Comments

  • Khato - Tuesday, October 29, 2013 - link

    Awwwww, from the title I was all excited to see an actual review of these two server SoCs, not just a feature comparison. Oh well, just have to wait awhile longer for that to come eh?
  • krumme - Tuesday, October 29, 2013 - link

    Johan just couldnt wait :). I understand him. From this arm generaion on its starting to become interesting. When was the last time something this happened?
  • Khato - Tuesday, October 29, 2013 - link

    If by interesting you mean a performance bump in line with expectations and the ability to address enough memory for it not to be a major limitation, than sure, this generation becomes interesting. Personally I found the first iteration more interesting for the simple fact that it actually beat Intel to the punch and provided a superior solution for the particular niche it was good for. Whereas this time around, well, the C2530 is almost at the bottom of Intel's Avoton lineup - only the one dual core model is below it. The more important point being that for any reasonably threaded workload Intel offers 8 core SKUs which, due to the fixed power consumption per node, greatly increase performance while only bumping up power consumption by ~33%.

    The next round might be a bit more interesting but I doubt it. Note how the ECX-2000 projected performance increase is pretty much exactly as much as the projected power increase over the ECX-1000? And that's with going from a 40nm process to 28nm. Why exactly should we expect anything more from the next generation?
  • JohanAnandtech - Wednesday, October 30, 2013 - link

    Your reasoning has some good points. However: the higher RAM capacity and CPU performance really allows that new kind of apps run on this thing. Apps that can benefit from the excellent network fabric for example. It will be interesting to see which realworld apps are bottlenecked by the limited CPU power and which ones are bottlenecked by network. Realworld server applications can sometimes be extremely different from the typical benches used. The ECX-2000 will not win any raytracing bench, but Calxeda does have a fighting chance turn as a Content Delivery Server or Drupal based server. All I am saying is, don't judge on raw performance or perf/watt.
  • wsw1982 - Wednesday, October 30, 2013 - link

    So, the point is "don't judge on the performance, don't argue on the perf / watt, don't judge on the software, don't judge on the availability, don't judge on the power consumption (no data is given)." But see, "we have 10 g eth"
  • JohanAnandtech - Wednesday, October 30, 2013 - link

    I am saying that raw perf/watt does not translate in realworld perf/watt when running realworld server apps. The S1260 looked on par with the ECX-1000 in the benchmark: about the same raw performance (integer crunching benches) and 8.5W vs 6W. The reality was that a S1260 server node needed 15 to 20W (vs 8W) and performed up to twice as slow in real server loads. That is 4-5 (!!) worse perf/watt ratio than expected from integer benches and TDP. Not saying the C2000 will be the same, just illustrating how far real server workloads can be from the other benchmarks.
  • hoboville - Thursday, October 31, 2013 - link

    He's saying the ARM chip, like all good RISC chips is good for certain applications like CDN. Real world and on other applications it might not hit its stride.

    Real world also means that, because the ARM has less RAM and fewer cores, it has the potential to be bogged down in scenarios where there is a higher demand than the cache / RAM / threads can handle. It may be that those requests only require a small amount of network bandwidth, but if the processor can't schedule those tasks...then the CPU is a problem. However, if the CPU is handling a simple decode of a massive file, it can stream the results faster than network bandwidth. Real world perf is subject to a large degree of variability in task type.
  • JohanAnandtech - Wednesday, October 30, 2013 - link

    I understand. We simply have to wait until the ODM solutions on ECX-2000 are validated.
  • geekfoo - Friday, November 1, 2013 - link

    wow, whoever they have laying out these moonshot module/sleds wants shooting :)

    you could easily get 8 or even 16 SoC in that same space today im sure, perhaps even more.

    Oh and Johan as you say you cant really compare OC but you should probably go into petty cash and get a few cheap Hardkernel ARM big.LITTLE A7 + A15 Exynos 5410 Octa-Core ODROID-XU's for generic testing etc
  • geekfoo - Friday, November 1, 2013 - link

    i find these older cortex tests interesting too
    and PandaBoard bearing an OMAP4430 with 1.0GHz Cortex-A9 MPCore)

Log in

Don't have an account? Sign up now