Intel 3rd Gen Xeon Scalable (Ice Lake SP) Review: Generationally Big, Competitively Small
by Andrei Frumusanu on April 6, 2021 11:00 AM EST- Posted in
- Servers
- CPUs
- Intel
- Xeon
- Enterprise
- Xeon Scalable
- Ice Lake-SP
Section by Ian Cutress
Ice Lake Xeon Processor List
Intel is introducing around 40 new processors across the Xeon Platinum (8300 series), Xeon Gold (6300 and 5300 series) and Xeon Silver (4300 series). Xeon Bronze no longer exists with Ice Lake. Much like the previous generation, the 8/6/5/4 segmentation signifies the series, and the 3 indicates the generation. Beyond that the two digits are somewhat meaningless as before.
That being said, there is a significant change. In the past, Platinum/Gold/Silver also indicated socket support, with Platinum supporting up to 8P configurations. This time around, as Ice Lake does not support 8P, all the processors will support only up to 2P, with a few select models being uniprocessor only. This makes the Platinum/Gold/Silver segmentation arbitrary, if only to indicate what sort of performance/price bracket the processors are in.
On top of this, Intel is adding in more suffixes to the equation. If you work with Xeon Scalable processors day in and day out, there is now a need to differentiate the Q processor from a P processor, and an S processor from an M processor. There’s a handy list down below.
SKU List
The easiest way with this is to jump into the deep end with the processor list. RCP stands for recommended customer price, and SGX GB stands for how large Software Guard Extension enclaves can be – either 8 GB, 64 GB, or 512 GB. Cells highlighted in green show highlights in the stack.
Intel 3rd Gen Xeon Scalable Ice Lake Xeon Only |
||||||||||
AnandTech | Cores w/HT |
Base Freq |
1T Freq |
nT Freq |
L3 MB |
TDP W |
SGX GB |
RCP 1ku |
DC PMM |
|
Xeon Platinum (8x DDR4-3200) | ||||||||||
8380 | 40 | 2300 | 3400 | 3000 | 60 | 270 | 512 | $8099 | Yes | |
8368 | Q | 38 | 2600 | 3700 | 3300 | 57 | 270 | 512 | $6743 | Yes |
8368 | 38 | 2400 | 3400 | 3200 | 57 | 270 | 512 | $6302 | Yes | |
8362 | 32 | 2800 | 3600 | 3500 | 48 | 265 | 64 | $5488 | Yes | |
8360 | Y | 36 | 2400 | 3500 | 3100 | 54 | 250 | 64 | $4702 | Yes |
8358 | P | 32 | 2600 | 3400 | 3200 | 48 | 240 | 8 | $3950 | Yes |
8358 | 32 | 2600 | 3400 | 3300 | 48 | 250 | 64 | $3950 | Yes | |
8352 | Y | 32 | 2200 | 3400 | 2800 | 48 | 205 | 64 | $3450 | Yes |
8352 | V | 36 | 2100 | 3500 | 2500 | 54 | 195 | 8 | $3450 | Yes |
8352 | S | 32 | 2200 | 3400 | 2800 | 48 | 205 | 512 | $4046 | Yes |
8352 | M | 32 | 2300 | 3500 | 2800 | 48 | 185 | 64 | $3864 | Yes |
8351 | N | 36 | 2400 | 3500 | 3100 | 54 | 225 | 64 | $3027 | Yes |
Xeon Gold 6300 (8x DDR4-3200) | ||||||||||
6354 | 18 | 3000 | 3600 | 3600 | 39 | 205 | 64 | $2445 | Yes | |
6348 | 28 | 2600 | 3500 | 3400 | 42 | 235 | 64 | $3072 | Yes | |
6346 | 16 | 3100 | 3600 | 3600 | 36 | 205 | 64 | $2300 | Yes | |
6342 | 24 | 2800 | 3500 | 3300 | 36 | 230 | 64 | $2529 | Yes | |
6338 | T | 24 | 2100 | 3400 | 2700 | 36 | 165 | 64 | $2742 | Yes |
6338 | N | 32 | 2200 | 3500 | 2700 | 48 | 185 | 64 | $2795 | Yes |
6338 | 32 | 2000 | 3200 | 2600 | 48 | 205 | 64 | $2612 | Yes | |
6336 | Y | 24 | 2400 | 3600 | 3000 | 36 | 185 | 64 | $1977 | Yes |
6334 | 8 | 3600 | 3700 | 3600 | 18 | 165 | 64 | $2214 | Yes | |
6330 | N | 28 | 2200 | 3400 | 2600 | 42 | 165 | 64 | $2029 | Yes |
6330 | 28 | 2000 | 3100 | 2600 | 42 | 205 | 64 | $1894 | Yes | |
6326 | 16 | 2900 | 3500 | 3300 | 24 | 185 | 64 | $1300 | Yes | |
6314 | U | 32 | 2300 | 3400 | 2900 | 48 | 205 | 64 | $2600 | Yes |
6312 | U | 24 | 2400 | 3600 | 3100 | 36 | 185 | 64 | $1450 | Yes |
Xeon Gold 5300 (8x DDR4-2933) | ||||||||||
5320 | T | 20 | 2300 | 3500 | 2900 | 30 | 150 | 64 | $1727 | Yes |
5320 | 26 | 2200 | 3400 | 2800 | 39 | 185 | 64 | $1555 | Yes | |
5318 | Y | 24 | 2100 | 3400 | 2600 | 36 | 165 | 64 | $1273 | Yes |
5318 | S | 24 | 2100 | 3400 | 2600 | 36 | 165 | 512 | $1667 | Yes |
5318 | N | 24 | 2100 | 3400 | 2700 | 36 | 150 | 64 | $1375 | Yes |
5317 | 12 | 3000 | 3600 | 3400 | 18 | 150 | 64 | $950 | Yes | |
5315 | Y | 8 | 3200 | 3600 | 3500 | 12 | 140 | 64 | $895 | Yes |
Xeon Silver (8x DDR4-2666) | ||||||||||
4316 | 20 | 2300 | 3400 | 2800 | 30 | 150 | 8 | $1002 | ||
4314 | 16 | 2400 | 3400 | 2900 | 24 | 135 | 8 | $694 | Yes | |
4310 | T | 10 | 2300 | 3400 | 2900 | 15 | 105 | 8 | $555 | |
4310 | 12 | 2100 | 3300 | 2700 | 18 | 120 | 8 | $501 | ||
4309 | Y | 8 | 2800 | 3600 | 3400 | 12 | 105 | 8 | $501 | |
Q = Liquid Cooled SKU Y = Supports Intel SST-PP 2.0 P = IaaS Cloud Specialised Processor V = SaaS Cloud Specialised Processor N = Networking/NFV Optimized M = Media Processing Optimized T = Long-Life and Extended Thermal Support U = Uniprocessor (1P Only) S = 512 GB SGX Enclave per CPU Guaranteed (...but not all 512 GB are labelled S) |
The peak turbo on these processors is 3.7 GHz, which is much lower than what we saw with the previous generation. Despite this, Intel seems to be keeping prices reasonable, and enabling Optane support through most of the stack except for the Silver processors (which has its own single exception).
New suffixes include Q, for a liquid cooled processor model with higher all-core frequencies at 270 W, and Intel said this part came about based on customer demand. The T processors are extended life / extended thermal support, which usually means -40ºC to 125ºC support – useful when working at the poles or in other extreme conditions. M/N/P/V specialized processors, according to our chat with Lisa Spelman, GM of the Xeon and Memory Group, are the focal points for software stack optimizations. Users that want focused hardware that can get 2-10%+ more performance on their specific workload can get these processors for which the software will be specifically tuned. Lisa stated that while all processors will receive uplifts, the segmented parts are the ones those uplifts will be targeted for. This means managing turbo vs use case and adapting code for that, which can only really be optimized for a known turbo profile.
Competition
It’s hard not to notice that the server market over the last couple of years has become more competitive. Not only is Intel competing with its own high market share, but x86 alternatives from AMD have scored big wins when it comes to per-core performance, and Arm implementations such as the Ampere Altra can enable unprecedented density at competitive performance as well. Here’s how they all stand, looking at top-of-stack offerings.
Top-of-Stack Competition | ||||
AnandTech | EPYC 7003 |
Amazon Graviton2 |
Ampere Altra |
Intel Xeon |
Platform | Milan | Graviton2 | QuickSilver | Ice Lake |
Processor | 7763 | Graviton2 | Q80-33 | 8380 |
uArch | Zen 3 | N1 | N1 | Sunny Cove |
Cores | 64 | 64 | 80 | 40 |
TDP | 280 W | ? | 250 W | 270 W |
Base Freq | 2450 | 2500 | 3300 | 2300 |
Turbo Freq | 3500 | 2500 | 3300 | 3400 |
All-Core | ~3200 | 2500 | 3300 | 3000 |
L3 Cache | 256 MB | 32 MB | 32 MB | 60 MB |
PCIe | 4.0 x128 | ? | 4.0 x128 | 4.0 x64 |
Chipset | On CPU | ? | On CPU | External |
DDR4 | 8 x 3200 | 8 x 3200 | 8 x 3200 | 8 x 3200 |
DRAM Cap | 4 TB | ? | 4 TB | 4 TB |
Optane | No | No | No | Yes |
Price | $7890 | N/A | $4050 | $8099 |
At 40 cores, Intel does look a little behind, especially as Ampere is currently at 80 cores and a higher frequency, and will come out with a 128-core Altra Max version here very shortly. This means Ampere will be able to enable more cores in a single socket than Intel can in two sockets. Intel’s competitive advantage however will be the large current install base and decades of optimization, as well as new security features and its total offering to the market.
On a pure x86 level, AMD launched Milan only a few weeks ago, with its new Zen 3 core which has been highly impressive. Using a chiplet based approach, AMD has over 1000 mm2 of silicon to spread across 64 high performance cores and massive amounts of IO. Compared to Intel, which is around 660 mm2 and monolithic, AMD has the chipset onboard in its IO die, whereas Intel keeps it external which saves a good amount of idle power. Top of stack pricing between AMD and Intel is similar now, however AMD is also focusing in the mid-range with products like the 7F53 which really impressed us. We’ll see what Intel can respond with.
In our numbers today, we’ll be comparing Intel’s top-of-stack to everyone else. The battle royale of behemoths.
Gen on Gen Improvements: ISO Power
It is also important to look at what Intel is offering generationally in a like-for-like comparison. Intel’s 28-core 205 W point for the previous generation Cascade Lake is a good stake in the ground, and the Intel Xeon Gold 6258R is the dual socket equivalent of the Platinum 8280. We reviewed the two and they performed identically.
For this review, we’ve put the 40-core Xeon Platinum 8380 down to 205 W to see the effect of performance. But perhaps more in line, we also have the Xeon Gold 6330 which is a direct 28-core and 205 W replacement.
Intel Xeon Comparison: 3rd Gen vs 2nd Gen 2P, 205 W vs 205 W |
|||
Xeon Gold 6330 |
Xeon Plat 8352Y |
AnandTech | Xeon Gold 6258R |
28 / 56 | 32 / 64 | Cores / Threads | 28 / 56 |
2000 MHz Base 3100 MHz ST 2600 MHz MT |
2200 MHz Base 3400 MHz ST 2800 MHz MT |
Base Freq ST Freq MT Freq |
2700 MHz Base 4000 MHz ST 3300 MHz MT |
35 MB + 42 MB | 40 MB + 48 MB | L2 + L3 Cache | 28 MB + 38.5 MB |
205 W | 205 W | TDP | 205 W |
PCIe 4.0 x64 | PCIe 4.0 x64 | PCIe | PCIe 3.0 x48 |
8 x DDR4-3200 | 8 x DDR4-3200 | DRAM Support | 6 x DDR4-2933 |
4 TB | 4 TB | DRAM Capacity | 1 TB |
200-series | 200-series | Optane | 100-series |
4 TB Optane + 2 TB DRAM |
4 TB Optane + 2 TB DRAM |
Optane Capacity Per Socket |
1 TB DDR4-2666 + 1.5 TB |
64 GB | 64 GB | SGX Enclave | None |
1P, 2P | 1P, 2P | Socket Support | 1P, 2P |
3 x 11.2 GT/s | 3x 11.2 GT/s | UPI Links | 3 x 10.4 GT/s |
$1894 | $3450 | Price (1ku) | $3950 |
So the 6330 might seem like a natural fit, however, the 8352Y feels better given that it is more equivalent in price and offers more performance. Intel is promoting a +20% raw performance boost with the new generation, which is important here, because the 8352Y still loses 500 MHz to the previous generation in all-core frequency. The 8352Y and 6330 do make it up in the extra features, such as DDR4 channels, memory support, PCIe 4.0, Optane support, SGX enclave support, and faster UPI links.
This review has a few of our 6330 numbers that we’ve been able to run in the short time we’ve had the system.
169 Comments
View All Comments
mode_13h - Wednesday, April 7, 2021 - link
Intel, AMD, and ARM all contribute loads of patches to both GCC and LLVM. There's no way either of these compilers can be seen as "underdeveloped".And Intel is usually doing compiler work a couple YEARS ahead of each CPU & GPU generation. If anyone is behind, it's AMD.
Oxford Guy - Wednesday, April 7, 2021 - link
It's not cheating if the CPU can do that work art that speed.It's only cheating if you don't make it clear to readers what kind of benchmark it is (hand-tuned assembly).
mode_13h - Thursday, April 8, 2021 - link
Benchmarks, in articles like this, should strive to be *relevant*. And for that, they ought to focus on representing the performance of the CPUs as the bulk of readers are likely to experience it.So, even if using some vendor-supplied compiler with trick settings might not fit your definition of "cheating", that doesn't mean it's a service to the readers. Maybe save that sort of thing for articles that specifically focus on some aspect of the CPU, rather than the *main* review.
Oxford Guy - Sunday, April 11, 2021 - link
There is nothing more relevant than being able to see all facets of a part's performance. This makes it possible to discern its actual performance capability.Some think all a CPU comparison needs are gaming benchmarks. There is more to look at than subsets of commercial software. Synthetic benchmarks also are valid data points.
mode_13h - Monday, April 12, 2021 - link
It's kind of like whether an automobile reviewer tests a car with racing tyres and 100-octane fuel. That would show you its maximum capabilities, but it's not how most people are going to experience it. While a racing enthusiast might be interested in knowing this, it's not a good proxy for the experience most people are likely to have with it.All I'm proposing is to prioritize accordingly. Yes, we want to know how many lateral g's it can pull on a skid pad, once you remove the limiting factor of the all-season tyres, but that's secondary.
Wilco1 - Thursday, April 8, 2021 - link
It's still cheating if you compare highly tuned benchmark scores with untuned scores. If you use it to trick users into believing CPU A is faster than CPU B eventhough CPU A is really slower, you are basically doing deceptive marketing. Mentioning it in the small print (which nobody reads) does not make it any less cheating.Oxford Guy - Sunday, April 11, 2021 - link
It's cheating to use software that's very unoptimized to claim that that's as much performance as CPU has.For example... let's say we'll just skip all software that has AVX-512 support — on the basis that it's just not worth testing because so many CPUs don't support it.
Wilco1 - Sunday, April 11, 2021 - link
Running not fully optimized software is what we do all the time, so that's exactly what we should be benchmarking. The -Ofast option used here is actually too optimized since most code is built with -O2. Some browsers use -Os/-Oz for much of their code!AVX-512 and software optimized for AVX-512 is quite rare today, and the results are pretty awful on the latest cores: https://www.phoronix.com/scan.php?page=article&...
Btw Andrei ran ICC vs GCC: https://twitter.com/andreif7/status/13808945639975...
ICC is 5% slower than GCC on SPECINT. So there we go.
mode_13h - Monday, April 12, 2021 - link
Not to disagree with you, but always take Phoronix' benchmarks with a grain of salt.First, he tested one 14 nm CPU model that only has one AVX-512 unit per core. Ice Lake has 2, and therefore might've shown more benefit.
Second, PTS is enormous (more than 1 month typical runtime) and I haven't seen Michael being very transparent about his criteria for selecting which benchmarks to feature in his articles. He can easily bias perception through picking benchmarks that respond well or poorly to the feature or product in question.
There are also some questions raised about his methodology, such as whether he effectively controlled for AVX-512 usage in some packages that contain hand-written asm. However, by looking at the power utilization graphs, I doubt that's an issue in this case. But, if he excluded such packages for that very reason, then it could unintentionally bias the results.
Wilco1 - Monday, April 12, 2021 - link
Completely agree that Phoronix benchmarks are dubious - it's not only the selection but also the lack of analysis of odd results and the incorrect way he does cross-ISA comparisons. It's far better to show a few standard benchmarks with well-known characteristics than a random sample of unknown microbenchmarks.Ignoring all that, there are sometimes useful results in all the noise. The power results show that for the selected benchmarks there is really use of AVX-512. Whether this is typical across a wider range of code is indeed the question...