Test Setup and #CPUOverload Benchmarks

As per our processor testing policy, we take a premium category motherboard suitable for the socket, and equip the system with a suitable amount of memory running at the manufacturer's maximum supported frequency. This is also typically run at JEDEC subtimings where possible. It is noted that some users are not keen on this policy, stating that sometimes the maximum supported frequency is quite low, or faster memory is available at a similar price, or that the JEDEC speeds can be prohibitive for performance. While these comments make sense, ultimately very few users apply memory profiles (either XMP or other) as they require interaction with the BIOS, and most users will fall back on JEDEC supported speeds - this includes home users as well as industry who might want to shave off a cent or two from the cost or stay within the margins set by the manufacturer. Where possible, we will extend out testing to include faster memory modules either at the same time as the review or a later date.

AnandTech Example
Processors
Motherboard DRAM PSU SSD
AMD
Zen2 APU Ryzen 7 4750G GIGABYTE
X570 Aorus I
Pro (F30a)
ADATA
32 GB
DDR4-3200
Corsair
AX860i
Crucial
MX500
2 TB
Ryzen 5 4650G
Ryzen 3 4350G
Zen+ APU Ryzen 5 3400G GIGABYTE
X570 Aorus I
Pro (F30a)
ADATA
32 GB
DDR4-3200
Corsair
AX860i
Crucial
MX500
2 TB
Athlon 300GE
Zen APU Ryzen 5 2400G GIGABYTE
X570 Aorus I
Pro (F30a)
ADATA
32 GB
DDR4-3200
Corsair
AX860i
Crucial
MX500
2 TB
Intel
Broadwell Core i7-5775C GIGABYTE
Z97X-UD5H
(F10)
Geil Veloce
16 GB
DDR3-1600
Antec HCP
1250W
Crucial
MX500
2 TB
Core i5-5675C
Tiger Lake Core i7-1185G7 Intel
Reference
32 GB
LPDDR4X
Integrated Samsung
PCIe 3.0
Mobile-Class Platforms
AMD Ryzen 9 4900HS (35W) ASUS Zephyrus G14
Ryzen 7 4800U (15W) Lenovo Yoga Slim 7
Ryzen Embedded V1605B (12W) UDOO Bolt
A9 9820 Chuwi Aerobox
Intel Core i7-6500U GIGABYTE BRIX
Core i7-8550U Huawei Matebook X Pro (2019)

 

Many thanks to...

We must thank the following companies for kindly providing hardware for our multiple test beds. Some of this hardware is not in this test bed specifically, but is used in other testing.

Hardware Providers for CPU and Motherboard Reviews
Sapphire
RX 460 Nitro
NVIDIA
RTX 2080 Ti
Crucial SSDs Corsair PSUs

G.Skill DDR4 ADATA DDR4 Silverstone
Coolers
Noctua
Coolers

A big thanks to ADATA for the ​AD4U3200716G22-SGN modules for this review. They're currently the backbone of our AMD testing.

The 2020 #CPUOverload Suite

Our CPU tests go through a number of main areas. We cover Web tests using our un-updateable version of Chromium, opening tricky PDFs, emulation, brain simulation, AI, 2D image to 3D model conversion, rendering (ray tracing, modeling), encoding (compression, AES, video and HEVC), office based tests, and our legacy tests (throwbacks from another generation of code but interesting to compare).

The Win10 Pro operating system is prepared in advance, and we run a number of registry edit commands again to ensure that various system features are turned off and disabled at the start of the benchmark suite. This includes disabling Cortana, disabling the GameDVR functionality, disabling Windows Error Reporting, disabling Windows Defender as much as possible again, disabling updates, and re-implementing power options and removing OneDrive, in-case it sprouted wings again.

A number of these tests have been requested by our readers, and we’ve split our tests into a few more categories than normal as our readers have been requesting specific focal tests for their workloads. A recent run on a Core i5-10600K, just for the CPU tests alone, took around 20 hours to complete.

Power

  • Peak Power (y-Cruncher using latest AVX)
  • Per-Core Loading Power using POV-Ray

Office

  • Agisoft Photoscan 1.3: 2D to 3D Conversion
  • Application Loading Time: GIMP 2.10.18 from a fresh install
  • Compile Testing (WIP)

Science

  • 3D Particle Movement v2.1 (Non-AVX + AVX2/AVX512)
  • y-Cruncher 0.78.9506 (Optimized Binary Splitting Compute for mathematical constants)
  • NAMD 2.13: Nanoscale Molecular Dynamics on ApoA1 protein
  • AI Benchmark 0.1.2 using TensorFlow (unoptimized for Windows)

Simulation

  • Digicortex 1.35: Brain stimulation simulation
  • Dwarf Fortress 0.44.12: Fantasy world creation and time passage
  • Dolphin 5.0: Ray Tracing rendering test for Wii emulator

Rendering

  • Blender 2.83 LTS: Popular rendering program, using PartyTug frame render
  • Corona 1.3: Ray Tracing Benchmark
  • Crysis CPU-Only: Can it run Crysis? What, on just the CPU at 1080p? Sure
  • POV-Ray 3.7.1: Another Ray Tracing Test
  • V-Ray: Another popular renderer
  • CineBench R20
  • CineBench R23

Encoding

  • Handbrake 1.32: Popular Transcoding tool
  • 7-Zip: Open source compression software
  • AES Encoding: Instruction accelerated encoding
  • WinRAR 5.90: Popular compression tool

Legacy

  • CineBench R10
  • CineBench R11.5
  • CineBench R15
  • 3DPM v1: Naïve version of 3DPM v2.1 with no acceleration
  • X264 HD3.0: Vintage transcoding benchmark

Web

  • Kraken 1.1: Depreciated web test with no successor
  • Octane 2.0: More comprehensive test (but also deprecated with no successor)
  • Speedometer 2: List-based web-test with different frameworks

Synthetic

  • GeekBench 4 and GeekBench 5
  • AIDA Memory Bandwidth
  • Linux OpenSSL Speed (rsa2048 sign/verify, sha256, md5)
  • LinX 0.9.5 LINPACK

SPEC (Estimated)

  • SPEC2006 rate-1T
  • SPEC2017 rate-1T
  • SPEC2017 rate-nT

It should be noted that due to the terms of the SPEC license, because our benchmark results are not vetted directly by the SPEC consortium, we have to label them as ‘estimated’. The benchmark is still run and we get results out, but those results have to have the ‘estimated’ label.

Others

  • A full x86 instruction throughput/latency analysis
  • Core-to-Core Latency
  • Cache-to-DRAM Latency
  • Frequency Ramping
  • A y-cruncher ‘sprint’ to see how 0.78.9506 scales will increasing digit compute

Some of these tests also have AIDA power wrappers around them in order to provide an insight in the way the power is reported through the test.

2020 CPU Gaming (GPU) Benchmarks

In the past, we’ve tackled the GPU benchmark set in several different ways. We’ve had one GPU to multiple games at one resolution, or multiple GPUs take a few games at one resolution, then as the automation progressed into something better, multiple GPUs take a few games at several resolutions. However, based on feedback, having the best GPU we can get hold of over a dozen games at several resolutions seems to be the best bet.

Normally securing GPUs for this testing is difficult, as we need several identical models for concurrent testing, and very rarely is a GPU manufacturer, or one of its OEM partners, happy to hand me 3-4+ of the latest and greatest. In that aspect, over the years, I have to thank ECS for sending us four GTX 580s in 2012, MSI for sending us three GTX 770 Lightnings in 2014, Sapphire for sending us multiple RX 480s and R9 Fury X cards in 2016, and in our last test suite, MSI for sending us three GTX 1080 Gaming cards in 2018.

For our testing on the 2020 suite, we have secured three RTX 2080 Ti GPUs direct from NVIDIA. These GPUs have been optimized for with drivers and in gaming titles, and given how rare our updates are, we are thankful for getting the high-end hardware.  (It’s worth noting we won’t be updating to whatever RTX 3080 variant is coming out at some point for a while yet.)

On the topic of resolutions, this is something that has been hit and miss for us in the past. Some users state that they want to see the lowest resolution and lowest fidelity options, because this puts the most strain on the CPU, such as a 480p Ultra Low setting. In the past we have found this unrealistic for all use cases, and even if it does give the best shot for a difference in results, the actual point where you come GPU limited might be at a higher resolution. In our last test suite, we went from the 720p Ultra Low up to 1080p Medium, 1440p High, and 4K Ultra settings. However, our most vocal readers hated it, because even by 1080p medium, we were GPU limited for the most part.

So to that end, the benchmarks this time round attempt to follow the basic pattern where possible:

  1. Lowest Resolution with lowest scaling, Lowest Settings
  2. 2560x1440 with the lowest settings (1080p where not possible)
  3. 3840x2160 with the lowest settings
  4. 1920x1080 at the maximum settings

Point (1) should give the ultimate CPU limited scenario. We should see that lift as we move up through (2) 1440p and (3) 4K, with 4K low still being quite strenuous in some titles.

Point (4) is essentially our ‘real world’ test. The RTX 2080 Ti is overkill for 1080p Maximum, and we’ll see that most modern CPUs pull well over 60 FPS average in this scenario.

What will be interesting is that for some titles, 4K Low is more compute heavy than 1080p Maximum, and for other titles that relationship is reversed.

For integrated graphics testing, we use the (1) and (4) settings to see where the GPU lies with respect to CPU performance (1) as well as test to confirm just how close integrated graphics is to proper 1080p gaming (4).

So we have the following benchmarks as part of our script, automated to the point of a one-button run and out pops the results approximately 10 hours later, per GPU. Also listed are the resolutions and settings used.

Offline Games

  1. Chernobylite, 360p Low, 1440p Low, 4K Low, 1080p Max
  2. Civilization 6, 480p Low, 1440p Low, 4K Low, 1080p Max
  3. Deus Ex: Mankind Divided, 600p Low, 1440p Low, 4K Low, 1080p Max
  4. Final Fantasy XIV: 768p Min, 1440p Min, 4K Min, 1080p Max
  5. Final Fantasy XV: 720p Standard, 1080p Standard, 4K Standard, 8K Standard
  6. World of Tanks: 768p Min, 1080p Standard, 1080p Max, 4K Max

Online Games

  1. Borderlands 3, 360p VLow, 1440p VLow, 4K VLow, 1080p Badass
  2. F1 2019, 768p ULow, 1440p ULow, 4K ULow, 1080p Ultra
  3. Far Cry 5, 720p Low, 1440p Low, 4K Low, 1080p Ultra
  4. Gears Tactics, 720p Low, 4K Low, 8K Low 1080p Ultra
  5. Grand Theft Auto 5, 720p Low, 1440p Low, 4K Low, 1080p Max
  6. Red Dead Redemption 2, 384p Min, 1440p Min, 8K Min, 1080p Max
  7. Strange Brigade DX12, 720p Low, 1440p Low, 4K Low, 1080p Ultra
  8. Strange Brigade Vulkan, 720p Low, 1440p Low, 4K Low, 1080p Ultra

For each of the games in our testing, we take the frame times where we can (the two that we cannot are Chernobylite and FFXIV). For these games, at each resolution/setting combination, we run them for as many loops in a given time limit (often 10 minutes per resolution). Results are then taken as average frame rates and 95th percentiles.

If there are any game developers out there involved with any of the benchmarks above, please get in touch at ian@anandtech.com. I have a list of requests to make benchmarking your title easier! I have a literal document I’ve compiled showing what would be ideal, best practices, who gets it correct and who gets it wrong, etc.

The other angle is DRM, and some titles have limits of 5 systems per day. This may limit our testing in some cases; in other cases it is solvable.

Desktop AMD Ryzen 4000 Review Power Consumption
POST A COMMENT

103 Comments

View All Comments

  • Cloakstar - Wednesday, December 16, 2020 - link

    (All tests were done with 2 sticks of RAM, so channel interleave only.) Reply
  • tamsysmm - Wednesday, December 16, 2020 - link

    I'd say that is a bit optimistic. I got speedup on my testing but not 33%

    Unigine Superposition 1.0
    Resolution: 1920 x 1080 - Mode: Fullscreen - Quality: Low - Renderer: OpenGL

    2 x 8192 MB 3600MHz Kingston, avg 34.7 fps (max 47.9 fps), (HX436C17PB4AK2/16)
    4 x 8192 MB 3600MHz Kingston, avg 37.0 fps (max 51.9 fps), (HX436C17PB4AK2/16*2)
    Reply
  • peevee - Wednesday, December 16, 2020 - link

    4 channels of DDR5 directly on the APU package (not routed through MB), 200W+, combining GPU power with a discrete GPU, at least of the same architecture, and we are talking (I am buying). Reply
  • ArcadeEngineer - Sunday, December 20, 2020 - link

    Four channels worth of DDR5 chips is far larger than any cpu socket. Reply
  • peevee - Wednesday, December 23, 2020 - link

    3 sides of a CPU board can fit 4 SODIMM slots. Even 8, 2 one above the other. Can be horizontal, vertical (but that will limit the size of a radiator) or slanted. Reply
  • Danvelopment - Wednesday, December 16, 2020 - link

    These chips were a real disappointment.

    Not because of their performance, but because of their OEM only status.

    They were exactly what I needed for an 8 core mini-ITX server, with good multi...single threaded performance (many single threaded streams), a pico-PSU and no expansion slots and they were never made available. Some stock did appear here and there as the article explains, but the pricing was extreme.

    Thus I still have a huge full tower with a R7-2700 and my next server will be either be an 8 core Xeon E5-V2 on one of those crazy Chinese x79 motherboards with dual m.2 NVMe slots in ITX.

    Or a massive 2x14 core 2GHz dual Xeon E5-v3 with a total system price close to buying just one of those processors.

    I lose out on single thread but gain on pure output.
    Reply
  • foxalopex - Wednesday, December 16, 2020 - link

    If you don't mind gambling a bit (I did and got what I was looking for), these chips can be found on aliexpress for a reasonable price. Reply
  • Lucky Stripes 99 - Thursday, December 17, 2020 - link

    Similar story here. I wanted to build a couple of nearly silent mini-ITX APU systems to replace my older Haswell desktops and I kept hitting walls. Zen+ APUs are getting long in the tooth and are incompatible with newer A520 and B550 boards (and X570 isn't optimal either). Zen 2 APUs have been stupidly expensive until recently and have questionable warranty support when purchased from Asian resellers. Zen 3 APUs are coming, but we don't know when and if they'll be OEM-only like their predecessor. Intel Comet Lake desktop CPUs lack an Iris Plus iGPU option, so you're stuck with horrible UHD 630 performance. Rocket Lake CPUs with Xe iGPU are coming, but given Intel's recent schedule misses, who knows when. Reply
  • lmcd - Friday, December 18, 2020 - link

    Rocket Lake won't slip, it's a 14nm part lol Reply
  • ozzuneoj86 - Wednesday, December 16, 2020 - link

    I have to echo the comments of others. Why benchmark 360p or 480p for integrated graphics? How is that even remotely relevant?

    The funny thing is, I work with retro computers and as I type this I have a 3dfx Voodoo 2 on a test bench right now, stress (heat) testing at 640x480. It runs like butter at that res, at least in games from 1997-1999.

    Why would anyone need to know how a modern IGP runs at a resolutions similar to or lower than what 3d accelerators used 23 years ago? What games even support 360P (480x360... a display resolution not normally used by PCs at any time period), and how could you even read menus at that res??
    Reply

Log in

Don't have an account? Sign up now