Final Words

The performance of the new Seagate Barracuda 7200.10 series keeps it promise by consistently outperforming the previous 7200.9 generation. This is truly impressive as the 7200.10 750GB drive we tested has 50% more capacity, perpendicular recording, and better acoustic results than the 7200.9 product. The thermal results of this drive are superior to the 7200.9 series as long as proper air circulation is provided around the drive. Seagate has taken a technology leadership position in the market for high capacity drives, a position we doubt Hitachi or Western Digital will be able to match in the near future. Seagate has suddenly made it easy and fairly cost effective to have multiple terabytes of storage capacity on the desktop with a drive that's oriented towards the performance market.

We are sure this drive will be very successful in a market that constantly craves additional storage capacity and also requires performance levels befitting the asking price. Seagate has ensured the days of large storage drives only being offered in the slower 5400 RPM range or with other performance limitations are all but over with this product release. While some will find this drive extremely expensive, the normal practice of launching a new drive series at a $1 per gigabyte of storage space has also been swept away by Seagate. The 750GB drive is currently selling for around 66 cents per gigabyte and we fully expect the price to drop further as Seagate rolls out the balance of their 7200.10 drives with capacities ranging from 200GB to 500GB.



The performance of the drive in our testing was very good for an ultra-high capacity unit and in certain application benchmarks, where real world applications would benefit, performance was superb in RAID 0 operations. The Seagate 750GB was able to deliver a sustained transfer rate of over 66MB/s which is on par with the Western Digital 74GB Raptor, a significant achievement, and an indication of the performance potential still available in 7200 RPM drives as the platter densities increase. The Seagate 750GB drive certainly would have been considered at the top of the 7,200 RPM market sector except for the surprising performance turned in by the Western Digital WD5000YS in our IPEAK application benchmarks. Though we did not post the results for all of the pure synthetic test programs we utilized, we did see a pattern develop where the Seagate drive consistently outperformed all other 7200 RPM drives in these tests while trading places in the IPEAK application benchmarks with the Western Digital 500GB drive.

We did notice in certain IPEAK benchmarks where both Seagate drives have a tendency to perform poorly compared to the WD drives when the seek distances were not clustered tightly or on the same track. This results in the requests not being available on the expected track or in cache, causing the drive to seek the information across the disc resulting in a traffic jam effect caused by the track to track seeks and resulting rotational latencies. In our IPEAK testing, the Seagate 7200.10 drive seems to thrive on consistent read/write requests for medium to large size blocks of information providing seek distances are closely clustered. In our application test benchmarks, the drive faired better in the gaming benchmarks, indicating that while the pure hard drive performance is lacking when compared to the WD drives, the drive would be a very solid choice for a gaming machine.

While the WD RE2 500GB drive is targeted for the near-enterprise market and is based on Raptor technology, we believe Seagate will need to match or even better its performance with their new 7200.10 500GB drive. Our true hope is that Seagate releases a single or two platter version of this drive at a 10,000 RPM spindle rate in order to compete with the WD Raptor. While we understand this move could certainly cannibalize their 10K enterprise product line, it would be nice to have a choice in the ultra-enthusiast market sector for SATA storage devices. With that said, we feel like the 320GB version of this drive with a 2 platter design will be the sweet spot for cost, storage capacity, and performance capability in this drive series.

Throughout a grueling test schedule that included over 240 hours of drive testing, we did not find or experience any quality issues with this drive. However, the one quibble we have with the drive would be the tones emitted while under full load when seeking or writing data. While the sounds would probably not be noticeable in most situations, we were able to hear the drive during full seek or read requests while it was in our test bed. The test equipment told us otherwise, but when comparing the drive to the 7200.9 series our ears found it to be louder at times. While the drive runs surprisingly cool with a small amount of air circulation around it we would not be willing to operate this drive on a 24/7 basis in an HTPC or SFF enclosure without a fan cooling it. This is still impressive performance, considering the capacity of the drive and how drives of this size generally run on the hot side even with active cooling.

We applaud Seagate for bringing perpendicular recording technology to the mass market this quickly. We can certainly attest to the benefits of this technology after spending significant time with this drive. However, as with all new technology, it will be difficult to ascertain its true performance potential along with any potential quality issues without a significant amount of user interaction with the product. Seagate is acutely aware of potential buyer reluctance in embracing a new drive technology and is offering five year warranties on the product. We know Seagate is extremely confident in perpendicular recording technology as they are currently in the process of implementing this technology across their main product lines. We doubt they would have made this commitment to perpendicular recording and risked the very future of the company on an unproven technology. Considering the other drive manufacturers are moving to perpendicular recording, it appears this technology will be the industry standard in the foreseeable future.

What is our recommendation? If storage capacity is your primary concern and your budget allows it, then purchase this drive. It offers superb single-user performance for an ultra-high capacity hard disk and would be an excellent choice for the home theater computer or any video or audio workstation with proper active cooling.

Acoustics and Thermals
Comments Locked

44 Comments

View All Comments

  • JakeBlade - Friday, May 26, 2006 - link

    Interesting that this drive has a MADE IN SINGAPORE label instead of Seagate's usual MADE IN CHINA junk.
  • ElFenix - Friday, May 19, 2006 - link

    no reason to upgrade from my SE16, i see.

    i'd like to see a couple more drives in tests, such as the latest hitachi.
  • Gary Key - Friday, May 19, 2006 - link

    quote:

    i'd like to see a couple more drives in tests, such as the latest hitachi.


    The reason we did not include the Hitachi unit is we have the revised 500GB unit arriving shortly and as mentioned in the article we will have a complete 500GB roundup with the new 7200.10 also. It will take some time to build the database with the revised test suite as we also have additional application timer tests coming shortly.

    The performance across most of the recently released mainstream drives is so close now that it comes down to a personal decision on warranty, reliability, thermals/acoustics, and capacity for the most part. However, drives like the Raptor and RE2 series do make things interesting for SATA on the desktop as did this drive for a PVR fanatic. ;-)
  • ElFenix - Friday, May 19, 2006 - link

    i'd also like to see audio tests from a little bit further away. 5 mm doesn't give a realistic idea of how loud it will be sitting 3 feet away on the floor. plus, for all i know where you place the microphone is extremely important when at 5 mm.
  • Gary Key - Friday, May 19, 2006 - link

    quote:

    i'd also like to see audio tests from a little bit further away. 5 mm doesn't give a realistic idea of how loud it will be sitting 3 feet away on the floor. plus, for all i know where you place the microphone is extremely important when at 5 mm.


    There is no one good area to measure the acoustics as you never know where the PC will be located, what type of case, fan noise, or ambient sounds are present. I can tell you that a drive that is loud at 3mm~5mm will be loud at three feet with all things being equal. Sound tones are also very subjective, the dull thumping sound the drive has under load might be perfectly acceptable while the higher pitched clicking sound of a Maxtor will be unbearable for some people.

    We place the two mics at different points on the drive to ensure a consistent recording point, we assume most people will utilize a horizontal mounting point with the rear of the drive facing the case front, although we test the drive facing the case side also as this cage design is becoming very popular. The tone of the drive can change dramatically with the addition of rubber washers between the drive and the mount points.

    Thanks for the comments. :)
  • jhvtoor - Friday, May 19, 2006 - link


    Temperature measurement using S.M.A.R.T. is not reliable. The sensor and electronics on the harddrive are used, en they are not calibrated.

    I am using the freeware "HDD Health" utility to monitor the SMART information. It reported the drive temperature of my desktop is 12 degrees celcius immediatly after winXP boot, while the room temperature is 19 degrees.... I am not using cooling techniques on this drive. This can only be explained by an inaccurate temperature measurement of this drive.

    I would suggest to use one an independent measurement instument in the future. Attach the sensor in the middle of the cover plate.

  • Gary Key - Friday, May 19, 2006 - link

    Hi,

    1. We have found S.M.A.R.T. to be "fairly" accurate along with our capture utility. We know it is not perfect but it allows us a consistent measurement of each drive in testing. In our 7200.10 test ActiveSmart reported a temperature of 26c after boot, room temp was 22c. We put the drive through 15 minutes of light usage, let it idle for 15 minutes, and then report this number as our idle number. All of the drives we have tested have followed the same pattern with a consistent idle reading after this usage, the idle temp will be the same 15 or 30 minutes later. If you stress the drive, you will see the temps rise accordingly and then fall back to the standing idle temp during the cooldown phase.

    2. One drawback is the temperatures are not "real" time, there is a delay built in, this is why on the load test (also idle) we loop PCMark05 several times and then take the reported temperature at the end of the session, generally the high temperature was actually reached in the previous loop.

    3. We have have tried using a sensor, infrared, and other methods with varying results. The problem is each section of the drive will report a different number. When we utilized a sensor on the top plate, the temps varied from drive to drive with the same model being tested. Each supplier uses different materials for their casings so that creates greater variables, it just is not consistent enough to report.
  • toattett - Thursday, May 18, 2006 - link

    Apparently,
    If I want a speedy drive, I buy the raptor.
    If I want a super large drive, I buy the new 750GB Seagate.
    If I want good performance and good amount of stoarge, I buy the 500GB WD.
  • Missing Ghost - Thursday, May 18, 2006 - link

    The pictures for the noise level are wrong. You put the dbA level as if it was a linear scale. It's not that way, the space between 0dB and 10dB should be smaller than the space between 10dB and 20dB. That way it will show more clearly the difference between the noise levels. It's a logarithmic scale.
  • Gary Key - Thursday, May 18, 2006 - link

    quote:

    The pictures for the noise level are wrong. You put the dbA level as if it was a linear scale. It's not that way, the space between 0dB and 10dB should be smaller than the space between 10dB and 20dB. That way it will show more clearly the difference between the noise levels. It's a logarithmic scale.


    Our current graph engine will not allow us to do this type of scale manipulation. We will probably have to utilize a Microsoft Excel chart in the next article. We agree with you, just not possible with the internal engine at this time although we are working on a new one.

Log in

Don't have an account? Sign up now