Power Consumption

SSDs are at their highest power consumption when performing large file sequential writes. The majority of the power consumption comes from writing to the NAND flash and when you’re doing sequential writes you have more flash devices engaged at a time. Thus my peak power consumption test involves measuring power used over the 5V rail while the drives perform my 2MB sequential write benchmark in Iometer and at idle of course.

First, the idle numbers:

Idle Drive Power

The Samsung and Indilinx drives use the least power, while the Intel drives use the most out of the SSDs. Intel honestly just needs to stick some power gate transistors in front of the controller and flash to curb power consumption at idle. They are all still lower than a mechanical drive, and much lower than a 3.5" HDD.

It's also worth noting that given the order of magnitude performance advantage these drives hold over traditional hard drives, they spend far more time at idle than their mechanical counterparts.

Load Drive Power

Under load the SSDs use anywhere from 2.5 - 3.5W, the exception being the Indilinx SLC drive which comes in at under 2W. Power consumption is roughly half if you switch to a random write workload, and the standings also switch places. While Intel's X25-M G2 draws less power than the OCZ Vertex Turbo in the sequential write test, it draws more power in a random write workload:

Random Write Power Consumption Min Average Max
Intel X25-M G2 160GB (MLC) 1.55 W 1.60 W 1.7 W
OCZ Vertex Turbo 128GB (Indilinx MLC) 1.13 W 1.17 W 1.21 W

 

As I alluded to before, the much higher performance of these drives than a traditional hard drive means that they spend much more time at an idle power state. The Seagate Momentus 5400.6 has roughly the same power characteristics of these two drives, but they outperform the Seagate by a factor of at least 16x. In other words, a good SSD delivers an order of magnitude better performance per watt than even a very efficient hard drive.

Individual Application Performance Final Words
Comments Locked

295 Comments

View All Comments

  • sotoa - Friday, September 4, 2009 - link

    Another great article. You making me drool over these SSD's!
    I can't wait till Win7 comes to my door so I can finally get an SSD for my laptop.
    Hopefully prices will drop some more by then and Trim firmware will be available.
  • lordmetroid - Thursday, September 3, 2009 - link

    I use them both because they are damn good and explanatory suffixes. It is 2009, soon 2010 I think we can at least get the suffixes correct, if someone doesn't know what they mean, wikipedia has answers.
  • AnnonymousCoward - Saturday, September 5, 2009 - link

    As someone who's particular about using SI and being correct, I think it's better to stick to GB for the sake of simplicity and consistency. The tiny inaccuracy is almost always irrelevant, and as long as all storage products advertise in GB, it wouldn't make sense to speak in terms of GiB.
  • Touche - Thursday, September 3, 2009 - link

    Both articles emphasize Intel's performance lead, but, looking at real world tests, the difference between it and Vertex is really small. Not hardly enough to justify the price difference. I feel like the articles are giving an impression that Intel is in a league of its own when in fact it's only marginally faster.
  • smjohns - Tuesday, September 8, 2009 - link

    This is where I struggle. It is all very well quoting lots of stats about all these drives but what I really want to know is if I went for Intel over the OCZ Vertex (non-turbo) where would I really notice the difference in performance on a laptop?

    Would it be slower start up / shut down?
    Slower application response times?
    Speed at opening large zipped files?
    Copying / processing large video files?

    If the difference is that slim then I guess it is down to just a personal preference....
  • morrie - Thursday, September 3, 2009 - link

    I've made it a habit of securely deleting files by using "shred" like this: shred -fuvz, and accepting the default number of passes, 25. Looks like this security practice is now out, as the "wear" on the drive would be at least 25x faster, bringing the stated life cycles closer to having an impact on drive longevity. So what's the alternative solution for securely deleting a file? Got to "delete" and forget about security? Or "shred" with a lower number of passes, say 7 or 10, and be sure to purchase a non-Intel drive with the ten year warranty and hope that the company is still in business, and in the hard drive business, should you need warranty service in the outer years...
  • Rasterman - Wednesday, September 16, 2009 - link

    watching too much CSI, there is an article somewhere i read by a data repair tech who works in one of the multi-million dollar data recovery labs, basically he said writing over it once is all you should do and even that is overkill 99% of the time. theoretically it is possible to even recover that _sometimes_, but the expense required is so high that unless you are committing a billion dollar fraud or are the secretary to osama bin laden no one will ever try to recover such data. chances are if you are in such circles you can afford a new drive 25x more often. and if you have such information or knowledge wouldn't be far easier and cheaper to simply beat it out of you than trying to recover a deleted drive?
  • iamezza - Friday, September 4, 2009 - link

    1 pass should be sufficient for most purposes. Unless you happen to be working on some _extremely_ sensitive/important data.
  • derkurt - Thursday, September 3, 2009 - link

    quote:

    So what's the alternative solution for securely deleting a file?


    I may be wrong on this, but I'd assume that once TRIM is enabled, a file is securely deleted if it has been deleted on the filesystem level. However, it might depend on the firmware when exactly the drive is going to actually delete the flash blocks which are marked as deletable by TRIM. For performance reasons the drive should do that as soon as possible after a TRIM command, but also preferably at a time when there is not much "action" going on - after all, the whole point of TRIM is to change the time of block erasing flash cells to a point where the drive is idle.
  • morrie - Thursday, September 3, 2009 - link

    That's on a Linux system btw

    As to aligning drives...how about an update to the article on what needs to be done/ensured, if anything, for using the drives with a Linux OS?

Log in

Don't have an account? Sign up now