Final Words

The performance of the new Seagate Barracuda 7200.10 series keeps it promise by consistently outperforming the previous 7200.9 generation. This is truly impressive as the 7200.10 750GB drive we tested has 50% more capacity, perpendicular recording, and better acoustic results than the 7200.9 product. The thermal results of this drive are superior to the 7200.9 series as long as proper air circulation is provided around the drive. Seagate has taken a technology leadership position in the market for high capacity drives, a position we doubt Hitachi or Western Digital will be able to match in the near future. Seagate has suddenly made it easy and fairly cost effective to have multiple terabytes of storage capacity on the desktop with a drive that's oriented towards the performance market.

We are sure this drive will be very successful in a market that constantly craves additional storage capacity and also requires performance levels befitting the asking price. Seagate has ensured the days of large storage drives only being offered in the slower 5400 RPM range or with other performance limitations are all but over with this product release. While some will find this drive extremely expensive, the normal practice of launching a new drive series at a $1 per gigabyte of storage space has also been swept away by Seagate. The 750GB drive is currently selling for around 66 cents per gigabyte and we fully expect the price to drop further as Seagate rolls out the balance of their 7200.10 drives with capacities ranging from 200GB to 500GB.



The performance of the drive in our testing was very good for an ultra-high capacity unit and in certain application benchmarks, where real world applications would benefit, performance was superb in RAID 0 operations. The Seagate 750GB was able to deliver a sustained transfer rate of over 66MB/s which is on par with the Western Digital 74GB Raptor, a significant achievement, and an indication of the performance potential still available in 7200 RPM drives as the platter densities increase. The Seagate 750GB drive certainly would have been considered at the top of the 7,200 RPM market sector except for the surprising performance turned in by the Western Digital WD5000YS in our IPEAK application benchmarks. Though we did not post the results for all of the pure synthetic test programs we utilized, we did see a pattern develop where the Seagate drive consistently outperformed all other 7200 RPM drives in these tests while trading places in the IPEAK application benchmarks with the Western Digital 500GB drive.

We did notice in certain IPEAK benchmarks where both Seagate drives have a tendency to perform poorly compared to the WD drives when the seek distances were not clustered tightly or on the same track. This results in the requests not being available on the expected track or in cache, causing the drive to seek the information across the disc resulting in a traffic jam effect caused by the track to track seeks and resulting rotational latencies. In our IPEAK testing, the Seagate 7200.10 drive seems to thrive on consistent read/write requests for medium to large size blocks of information providing seek distances are closely clustered. In our application test benchmarks, the drive faired better in the gaming benchmarks, indicating that while the pure hard drive performance is lacking when compared to the WD drives, the drive would be a very solid choice for a gaming machine.

While the WD RE2 500GB drive is targeted for the near-enterprise market and is based on Raptor technology, we believe Seagate will need to match or even better its performance with their new 7200.10 500GB drive. Our true hope is that Seagate releases a single or two platter version of this drive at a 10,000 RPM spindle rate in order to compete with the WD Raptor. While we understand this move could certainly cannibalize their 10K enterprise product line, it would be nice to have a choice in the ultra-enthusiast market sector for SATA storage devices. With that said, we feel like the 320GB version of this drive with a 2 platter design will be the sweet spot for cost, storage capacity, and performance capability in this drive series.

Throughout a grueling test schedule that included over 240 hours of drive testing, we did not find or experience any quality issues with this drive. However, the one quibble we have with the drive would be the tones emitted while under full load when seeking or writing data. While the sounds would probably not be noticeable in most situations, we were able to hear the drive during full seek or read requests while it was in our test bed. The test equipment told us otherwise, but when comparing the drive to the 7200.9 series our ears found it to be louder at times. While the drive runs surprisingly cool with a small amount of air circulation around it we would not be willing to operate this drive on a 24/7 basis in an HTPC or SFF enclosure without a fan cooling it. This is still impressive performance, considering the capacity of the drive and how drives of this size generally run on the hot side even with active cooling.

We applaud Seagate for bringing perpendicular recording technology to the mass market this quickly. We can certainly attest to the benefits of this technology after spending significant time with this drive. However, as with all new technology, it will be difficult to ascertain its true performance potential along with any potential quality issues without a significant amount of user interaction with the product. Seagate is acutely aware of potential buyer reluctance in embracing a new drive technology and is offering five year warranties on the product. We know Seagate is extremely confident in perpendicular recording technology as they are currently in the process of implementing this technology across their main product lines. We doubt they would have made this commitment to perpendicular recording and risked the very future of the company on an unproven technology. Considering the other drive manufacturers are moving to perpendicular recording, it appears this technology will be the industry standard in the foreseeable future.

What is our recommendation? If storage capacity is your primary concern and your budget allows it, then purchase this drive. It offers superb single-user performance for an ultra-high capacity hard disk and would be an excellent choice for the home theater computer or any video or audio workstation with proper active cooling.

Acoustics and Thermals
Comments Locked

44 Comments

View All Comments

  • segagenesis - Thursday, May 18, 2006 - link

    ... for when we see 1TB in a single drive. Despite the cost the sheer amount of storage available in a single drive is amazing.

    One thing I have to question though, maybe I missed it in the article, how much space do you "lose" when you format a 750GB drive? Yes I am aware of the 1000 vs. 1024 bits per byte differences... but how bad is it getting now?
  • Gary Key - Thursday, May 18, 2006 - link

    quote:

    One thing I have to question though, maybe I missed it in the article, how much space do you "lose" when you format a 750GB drive? Yes I am aware of the 1000 vs. 1024 bits per byte differences... but how bad is it getting now?


    The capacity differences from the drive manufacturers and what the operating system reports are on page 5. In this case, Seagate claims 750GB, current operating systems will report and provide 698.6GB of storage capacity. :)
  • mino - Thursday, May 18, 2006 - link

    Actually no, there is no "capacity difference".

    750GB as SI-System Giga-Bytes means 750*10^9 B = 750.000.000.000 bytes = 0.75TB

    this will an OS call 750 000 000 000 bytes(B) = 732.421.875 kB = 715.255 MB = 698 GB = 0.682 TB

    The amount of data is the same, those are just different units.
  • Gary Key - Thursday, May 18, 2006 - link

    quote:

    Actually no, there is no "capacity difference".


    We know this, that is why we do not refer to the drives "formated capacity" as if the drive lost data capacity because you formatted it. He had already mentioned he knew the calculation difference so I was simply answering his question on how the OS would report the data "capacity" (probably the wrong word to use) compared to Seagate in this case. If the drive industry adhered to the standard everyone else is utilizing then life in this case would be simple. ;-)

Log in

Don't have an account? Sign up now