Final Words

Armed with four 1GB sticks, we ran into more than a few cases where the i-RAM's size limitations made it impractical for use in our system.  Although 4GB is enough for a good deal of applications, an 8GB card would get far more use.  Based on the size of applications and games that we tried installing on the card, we'd say that 8GB would be the sweet spot - which unfortunately would either take two cards or much more expensive DIMMs.  We wouldn't recommend going with a 2GB partition unless you have a very specific usage model that you know won't use any more.  With only 2GB, we quickly found ourselves very constrained for space.  The past few years of having much more storage than we could ever ask for has unfortunately made us forget about how tough things can get with only a couple of GBs of space. 

Although the card is presently cramped with just four DIMM slots, one option for Gigabyte is to introduce a two-slot version with support for eight DIMMs.  The problem that we foresee most people running into is that older memory may be plentiful, but is usually smaller in size.  By the time current Athlon 64 users migrate to DDR2, they may have a handful of 512MB or 1GB sticks laying around, but presently, the only spare memory that you're most likely to have is a few 128MB or 256MB DDR modules from older builds.  Without being able to re-use older memory, the cost of outfitting an i-RAM card with a full 4GB of memory starts getting expensive.  At $90 per gigabyte of memory, you're talking about $360 just in memory costs, plus another $150 for the card itself.  For most folks, that's a pretty steep entry fee, but then again, if you've just splurged on a GeForce 7800 GTX, then maybe your budget can handle it. 

But that right there hits the nail on the head; by no means is the i-RAM a cheap upgrade, but then again, neither is an Athlon 64 X2, or a brand new 7800 GTX, or an SLI motherboard.  If you put it in perspective, an i-RAM with 4GB of brand new DDR400 memory isn't all that expensive compared to some of the other upgrades that we've recommended recently.  So the question then becomes, is Gigabyte's i-RAM as important to your overall system performance as an Athlon 64 X2 or a GeForce 7800 GTX?

For gamers, there is a slight improvement in level load times if you keep your game on the i-RAM.  Most games will fit on a 4GB card, but as we noticed during our testing, not all will.  The reduction in load times isn't nearly as dramatic as we had originally thought. It seems as if level load times are actually more affected by CPU and platform performance than just disk performance. 

Those users who have one or two applications that occupy all of their time, and tend to take a while to load or work with due to constant disk access would be more than happy with the i-RAM.  By far, the biggest performance improvements we saw when using the i-RAM were obviously with disk intensive operations such as file copying.  If your applications or usage models involve a lot of data movement without much manipulation, then the i-RAM may very well be what you need. 

At the same time, for all of the situations where the i-RAM was quite useful, there were a number where it wasn't.  Multitasking performance went up, but only in one out of the three Winstone tests, and even then, it's going to be rather tough to install a large number of applications on the i-RAM due to its size limitations, so your multitasking performance benefits will be numbered.  Game load times weren't always improved by a great deal and as we saw with the Business and Multimedia Content Creation Winstone tests, sometimes you are better off with a faster CPU than with the i-RAM. 

The important thing to focus on is that thanks to Gigabyte's battery system, data-loss was never an issue during our use of the card; and despite the lack of ECC memory support, we never had any data corruption during our testing. 

In the end, the i-RAM is an interesting addition to a system, but it's usefulness will truly vary from one user to the next.  With a bit more capacity, and especially for those users who happen to have a few 1GB sticks laying around, the i-RAM could be a very powerful addition to your system. Hats off to Gigabyte for making something useful, and we can't wait to see rev 2...

Overall Performance
Comments Locked

133 Comments

View All Comments

  • abzzeus - Tuesday, July 26, 2005 - link

    http://www.cenatek.com/store/category.cfm?Category...">http://www.cenatek.com/store/category.cfm?Category...

    This a a 4GB PCI Drive @$3000 (yes three thousand) but this is for a native drive with direct access to the PCI bus thus can sustain 133Mbit/s.

    What I'd like to see is a version that fits in 5.25" drive slot 12+ slots for RAM using a std connector for power and SATA II or SCSI (SCA?).

    I can see several advantages for this product IF you think about it
    Webcache server (hold the cache)
    Temporary files (great for those programs that write temp files like crazy)
    Swap space on Database server (lookup PAE, SQL server and 36bit addressing - 32bit windows can address upto 8GB RAM IF the O/S and the app are writen for it (been there :( )
    Swap space on badly behaved app - there are apps that are ported from *nix to windows that tell the OS I have pagable RAM which the server then dumps to disc (4million page faults in 2 hours!) only for the app to ask for it
    Log files - DB servers write out transitional logs once per transaction, this needs a drive that is FAST

    Having more than one of these in a system (power system) means that you can seperate out the I/O onto seperate physical drives or even better controller or best seperate PCI buses (Servers, Really big servers can have three PCI buses) this means for a server (Unit means logical disc made from RAID arrays, seperated out as much as possible, by controller and PCI bus)

    Unit 1 - OS and Apps Binaries
    Unit 2 - Paging file
    Unit 3 - Logs
    Unit 4 - Temp
    Unit 5 - Data

    Maximum seperation equeals maximum I/O

  • Klober - Tuesday, July 26, 2005 - link

    First off, another good article Anand. Now, on to my point...

    I'm wondering about World of Warcraft. After the first article where the info debuted there was a lot of talk in the comments section, and one of the subjects was WoW. It wouldn't have been possible to install WoW to the i-RAM because it's too big (~4.6GB on my machine). However, once AnandTech recieves another i-RAM to test with, either in JBOD or RAID-0, I would like to hear at least a subjective opinion on how WoW runs in large battles and such. I know my brother's machine gets stuttery when there's a big PvP battle, and through my troubleshooting I've gathered that it's a hard drive speed issue. If any of the AnandTech team has a high level character on their account and like PvP, please post something on performance in WoW.

    Thanks!
  • JarredWalton - Tuesday, July 26, 2005 - link

    I can't see having the i-RAM as being more beneficial to any game than simply adding more RAM to the system. If you're going to have 4x1GB DIMMs installed on the i-RAM, why not just put them into the system itself instead? As for WoW, even if the installed size is 4.6 GB, I doubt the game actually goes much above 1GB of memory use - very few applications do. If you have 2GB or more of RAM, do you still get stuttering issues in WoW? If so, there's a reasonable chance that it's simply GPU power that's lacking rather than RAM - or perhaps GPU RAM would help?

    (Note: I'm not a WoW player, so I'm just shooting from the hip.)
  • EODetroit - Wednesday, July 27, 2005 - link

    There are at least 3 seperate data files in the WoW installation that are 1 GB in size each. A bunch of smaller but still over 100 MB files as well. All told as he said its about 4.6GB, and its more than 4GB in that one folder alone. So yeah, the game would go over 1GB in memory use if it was written well enough.

    I play WoW a lot, and loading into highly populated areas sucks. You hard drive thrashes and you have no control of your character until everything is loaded. I'm assuming its busy loading the textures of the equipment that all the player charactes around you are wearing.

    This I-Ram thing might help out a lot, seeing as consumer motherboards don't support over 4GB of memory and the data files alone for WoW totals over 4GB. The problem again is that you'd need to raid two of the I-Ram devices together to get that much storage, and we don't even know if it would result in a tangible benefit.

    As others have mentioned, for all fast action games, it isn't the load times that Anand should be focusing on... its the in-game stutters when something suddenly has to get loaded from disk. Those are killer, and even if the initial game load times only decrease by 5%, if the stutters are eliminated, this might just be worth the cash, more than a new $600 video card certainly.
  • JarredWalton - Thursday, July 28, 2005 - link

    My point wasn't that WoW doesn't ever exceed 1GB, but that it doesn't exceed 2GB of RAM use. Actually, we should have probably mentioned that point as well: no single application under 32-bit Windows (not counting PAE/NUMA setups) can use more than 2GB of RAM. The 32-bit memory space is partitioned into 2GB for applications and 2GB for the OS, if I have my information right. Basically, you need to try out WoW with a 2GB setup before you can say that i-RAM would or wouldn't be able to help.

    Going back to the earlier statements, though, i-RAM is still nowhere near as fast as system RAM. The delay of PC3200 is around 140ns worst case, and bandwidth is still 3.2 GBps or 6.4 GBps dual-channel. i-RAM seems to be somewhere in the microseconds range for access times, and it's limited to 150 MBps bandwidth. If you can add RAM to your PC, that would be the first step to improving performance.
  • phonon - Wednesday, July 27, 2005 - link

    If you have Windows XP Pro, you should be able to make a volume that includes the I-RAM and a regular disk. Then you can make a hard links on the I-RAM that point to the additional 600 Megabytes or so on the regular disk that won't fit on the I-RAM. I've never done anything like this myself, but I think it should work. Any comments?
  • johnsonx - Tuesday, July 26, 2005 - link

    someone's probably said all this, but i don't feel like reading all 80-odd comments:

    First, this strikes me more as a proof-of-concept effort. Sure, they'll sell you the engineering samples, for $150. Rev 2 will be the real product.

    Second, I did see several people suggest that interfacing the board to the SATA interface rather than directly to the PCI bus makes it slower. Why? Standard 32-bit 33Mhz PCI only has 133MB/s of bandwidth, and that's often shared by other devices as well. SATA has 150MB/s of bandwidth, and in most cases is connected to the system by at least a 66Mhz PCI link, or more often some other high-speed chipset link.

    Interfacing to SATA also means that Gigabyte doesn't have to write drivers for 32- and 64-bit flavors of Windows and various Linux distributions, MAC, and more obscure but definitely presents OSes like BSD, NetWare and Solaris (/me wonders about putting the boot partition and SYS volume of a NetWare server on an iRam... probably no real benefit, but you never know).

    Third, I might imagine that Rev 2 will support SATA II with 300MB/s transfer speeds, ECC, and perhaps 8 DDR slots.
  • rbabiak - Tuesday, July 26, 2005 - link

    Would have been nice to see some info on what it performed like as the temp folder for windows. all that internet web browser cache and other stuff that windows sticks off in the temp while it does stuff.

    this is data that you don't usally mind if it just disapears everyone in a while :)
  • UrQuan3 - Tuesday, July 26, 2005 - link

    I remember five or six years ago there were products that would plug into a PCI slot and use PC133 RAM to do this same job. They would show up as a harddrive controller and windows would use default drivers unless you needed something different. This was when programs didn't expect you to have enough RAM to keep a scratch file in RAM, so they'd write out files after every action. A PCI card with a gig of RAM for accepting these scratch files made a huge difference. There's just less need now.

    Then there's the other problem. SATA may be 150MB/s, but the PCI bus it's attached to is only 133MB/s. This certainly explains why everything runs at DDR200. If they'd made a PCI-X card there might be a bigger improvement. The bright side is that they used an FPGA. If next week they decide to implement SATA2, they can issue an update and everyone can upgrade their cards. Companies like Cisco do this several times a year in telecom products.
  • EODetroit - Tuesday, July 26, 2005 - link

    #82:

    You can buy these still. Check out this ebay auction: http://cgi.ebay.com/ws/eBayISAPI.dll?ViewItem&...">http://cgi.ebay.com/ws/eBayISAPI.dll?Vi...egory=16...

    I'd hope and pray this thing is a lot faster than the iRam for all the extra cost. But the fact that it sits in a PCI card slot (I'm talking about the QikDrive linked above, not the iRam) makes me question that.

Log in

Don't have an account? Sign up now