Over the years, Intel’s consumer processor lineup has featured its usual array of overclocking ‘K’ models, and more recently the ‘F’ series that come without integrated graphics. The bulk of the lineup however are still the versions without a suffix, the ‘nones’, like the Core i7-10700 in this review. These processors sit in the middle of the road, almost always having a 65 W TDP compared to the 91-125 W overclockable models, but also having integrated graphics, unlike the F family. What makes it interesting is when we pair one of these 65 W parts against its 125 W overclocking counterpart, and if the extra base and turbo frequency boost is actually worth the money in an era where motherboards don't seem to care about power?

Intel’s Core i7-10700 at 65 W: Is It Really 65 W?

The understanding of the way that Intel references its TDP (thermal design point) values has gone through a mini-revolution in the last few years. We have had an almost-decade of quad-core processors at around 90 W and 65 W, and most of them would never reached these numbers even under turbo modes - for example, the Core i5-6600K was rated at 91 W, but peak power draw was only 83 W. This has been the norm for a while, until recently when Intel had to start boosting the core count. As we have slowly gone up in core count, from 4 to 6 to 8 and now 10, these numbers have seemed almost arbitrary for a while.

The reason comes down to what TDP really is. In the past, we used to assume that it was the peak power consumption of the processor was its TDP rating – after all, a ‘thermal design point’ of a processor was almost worthless if you didn’t account for the peak power dissipation. What makes Intel’s situation different (or confusing, depending on how you want to call it) is that the company defines its TDP in the context of a 'base' frequency. The TDP will be the maximum power under a sustained workload for which the base frequency is the minimum frequency guarantee. Intel defines a sustained workload one in which the 'turbo budget' has expired, and the processor will achieve its best frequency above base frequency (but not turbo modes) .

The point about ‘not turbo’ is the key element here. Intel’s TDP ratings are only in effect for the base frequency, not the turbo frequency. If a PC is built with a maximum power dissipation in mind, allowing a processor to turbo above that power might have catastrophic consequences for the thermal performance of that system. The other angle is that Intel never quotes the turbo power levels (also known as Power Level 2, or PL2) alongside the other specifications, although they are technically in the specification documents when they get released.

On top of all this, motherboard manufacturers also get a say in how a processor performs. Because turbo power is only an optional suggestion from Intel, technically Intel will accept any value for the ceiling of the turbo power, and accept turbo under any circumstances if the motherboard manufacturer wants it. Motherboard manufacturers overengineer their motherboards to support longer turbo times (or overclocking), and so they will often ignore these Intel recommended values for PL2, allowing the processor to turbo harder for longer, and in a lot of cases of premium motherboards, indefinitely.

So why does all this matter with respect for this review? Well my key comparison in this review is our new processor, the Core i7-10700, up against its overclocking counterpart, the Core i7-10700K. Aside from the suffix difference, the K variant has a TDP almost twice as high, and this manifests almost entirely in the base frequency difference.

Intel SKU vs SKU
(an homage to Spy vs Spy)
Intel Core
AnandTech Intel Core
8 C / 16 T Cores / Threads 8 C / 16 T
3.8 GHz Base Frequency 2.9 GHz
5.1 GHz Peak Turbo (1-2C) 4.8 GHz
4.7 GHz All-Core Turbo 4.6 GHz
2 x DDR4-2933
Up to 128 GB
DRAM Support 2 x DDR4-2933
Up to 128 GB
125 W TDP / PL1 65 W
Intel UHD 630 Integrated Graphics Intel UHD 630
$374 Price (1ku) $323

Even though the TDP is 125 W vs 65 W, the peak turbo frequency difference is only +300 MHz, and the all-core turbo difference is only +100 MHz. In contrast, the base frequency difference is +900 MHz, and that is ultimately what the user is paying for. But this base frequency only matters if the motherboard bothers to put a cap on turbo budgets.

The base frequency is more of a minimum guaranteed frequency, than an absolute 'this is what you will get' value under a sustained workload. Intel likes to state that the base frequency is the guarantee, however if a processor can achieve a higher frequency while power limited, it will - if it can achieve that power value with 200 MHz above base frequency, it will run at the higher frequency. If this sounds familiar, this is how all AMD Ryzen processors work, however Intel only implements it when turbo is no longer available. This ends up being very processor dependent. 

For the turbo, as mentioned, Intel has recommendations for power levels and turbo time in its documentation, however OEMs and motherboard manufacturers are free to routinely ignore it. This is no more obvious than when comparing these two processors. What does this mean for end-users? Well, graphs like this.

Intel Peak Power Draw

First time I saw these numbers, it shocked me. Why is this cheaper, and supposedly less powerful version of this silicon running at a higher turbo power in a standard off-the-shelf Intel Z490 motherboard?

Welcome to our review. There’s going to be a lot of discussion on the page where we talk about power, frequency, and the quality of the silicon. Also when it comes to benchmarking, because if we were to take an extreme view of everything, then benchmarking is pointless and I'm out of a job.

The Market

The Core i7-10700 and Core i7-10700K are both members of Intel’s 10th Generation ‘Comet Lake’ Core i7 family. This means they are based on Intel’s latest 14nm process variant (14+++, we think, Intel stopped telling us outright), but are essentially power and frequency optimized versions of Intel’s 6th Generation Skylake Core, except we get eight cores rather than four.

Intel 10th Gen Comet Lake
Core i9 and Core i7
AnandTech Cores Base
Core i9
i9-10900K 10C/20T 3.7 5.1 4.8 5.2 5.3 4.9 125 630 $488
i9-10900KF 10C/20T 3.7 5.1 4.8 5.2 5.3 4.9 125 - $472
i9-10900 10C/20T 2.8 5.0 4.5 5.1 5.2 4.6 65 630 $439
i9-10900F 10C/20T 2.8 5.0 4.5 5.1 5.2 4.6 65 - $422
i9-10900T 10C/20T 1.9 4.5 3.7 4.6 - - 35 630 $439
i9-10850K 10C/20T 3.6 5.0 4.7 5.1 5.2 4.8 125 630 $453
Core i7
i7-10700K 8C/16T 3.8 5.0 4.7 5.1 - - 125 630 $374
i7-10700KF 8C/16T 3.8 5.0 4.7 5.1 - - 125 - $349
i7-10700 8C/16T 2.9 4.7 4.6 4.8 - - 65 630 $323
i7-10700F 8C/16T 2.9 4.7 4.6 4.8 - - 65 - $298
i7-10700T 8C/16T 2.0 4.4 3.7 4.5 - - 35 630 $325
T = Low Power
F = No Integrated Graphics
K = Overclockable

TB2/TB3 = Intel Turbo Boost 2 (any core in CPU), TB3 (specific core in CPU)
TVB = Thermal Velocity Boost (Spec = 70ºC); routinely ignored by motherboard vendors

Both CPUs are rated to run dual channel memory at DDR4-2933 speeds, and have 16 PCIe 3.0 lanes with support for Intel 400-series chipsets. These are socket LGA1200 processors, and are incompatible with other LGA115x motherboards.

Aside from the power and frequency differences, the other one is the price: $335 MSRP for the Core i7-10700, and $387 MSRP for the Core i7-10700K. This is a +$52 difference, which is designed to enable better frequencies and overclocking on the K processor. The non-K processor may be shipped with Intel’s 65 W PCG-2015C thermal solution, depending on location, although the first thing you would want to do is to buy something/anything else to cool the processor with given that it'll peak at 215W in enthusiast systems.

On the competing side from AMD, the nearest solution is the Ryzen 5 5600X, a 65W version of Zen 3 with two fewer cores but higher IPC, with an MSRP of $300. This does come with a reasonably good default cooler. Our full review of the Ryzen 5 5600X can be found here.

This Review

The goal of this review was initially just to benchmark the Core i7-10700 and see where it fits into the market. As our testing results came into focus, it was clear that we had an interesting comparison on our hands against the Core i7-10700K, which we have also tested. In this review the focus will be on the difference between the two, focusing primarily on where the i7-10700 lands compared to the competition, and perhaps some of the complexities involved.

Test Setup

As per our processor testing policy, we take a premium category motherboard suitable for the socket, and equip the system with a suitable amount of memory running at the manufacturer's maximum supported frequency. This is also typically run at JEDEC subtimings where possible. It is noted that some users are not keen on this policy, stating that sometimes the maximum supported frequency is quite low, or faster memory is available at a similar price, or that the JEDEC speeds can be prohibitive for performance. While these comments make sense, ultimately very few users apply memory profiles (either XMP or other) as they require interaction with the BIOS, and most users will fall back on JEDEC supported speeds - this includes home users as well as industry who might want to shave off a cent or two from the cost or stay within the margins set by the manufacturer.

Test Setup
Intel LGA1200 Core i9-10900K
Core i9-10850K
Core i7-10700K
Core i7-10700
ASRock Z490
PG Velocita
+ SST*
Corsair DomRGB
4x8 GB
AMD AM4 Ryzen 9 5900X
Ryzen 7 5800X
Ryzen 5 5600X
X570 Godlike
2x32 GB
GPU Sapphire RX 460 2GB (CPU Tests)
NVIDIA RTX 2080 Ti FE (Gaming Tests)
PSU Corsair AX860i
Corsair AX1200i
Silverstone SST-ST1000-P
SSD Crucial MX500 2TB
*TRUE Copper used with Silverstone SST-FHP141-VF 173 CFM fans. Nice and loud.

Many thanks to...

We must thank the following companies for kindly providing hardware for our multiple test beds. Some of this hardware is not in this test bed specifically, but is used in other testing.

Hardware Providers for CPU and Motherboard Reviews
RX 460 Nitro
RTX 2080 Ti
Crucial SSDs Corsair PSUs

G.Skill DDR4 ADATA DDR4 Silverstone

A big thanks to ADATA for the ​AD4U3200716G22-SGN modules for this review. They're currently the backbone of our AMD testing.

Users interested in the details of our current CPU benchmark suite can refer to our #CPUOverload article which covers the topics of benchmark automation as well as what our suite runs and why. We also benchmark much more data than is shown in a typical review, all of which you can see in our benchmark database. We call it ‘Bench’, and there’s also a link on the top of the website in case you need it for processor comparison in the future.

If anyone is wondering why I've written the SKU of the processor on it with a sharpie, as per our lead image, it's because when you're shuffling through a box of them in low light, what is printed on the headspreader can be difficult to read if the light isn't right. With a perminent marker, it makes it much easier to read at-a-glance.

Read on for our full review.

Power Consumption
Comments Locked


View All Comments

  • Spunjji - Wednesday, January 27, 2021 - link

    The review didn't say it is a bad CPU.
  • HarkPtooie - Tuesday, February 2, 2021 - link

    Gigabyte B460M DS3H
    Pegged at 100% CPU utilization on 8 cores (HT disabled) the wall meter says 149-163 W, CoreTemp says I use about 70 W core and 8 W uncore. CPU multiplier bounces between 43-47x, though mainly resting at 46x. Temps are 65-66°C using a humble CoolerMaster TX3 Evo.

    Just upped the PL1 to 250 W in BIOS. It made no discernible difference, so I suppose it doesn't work on B460 chipsets.
  • Everett F Sargent - Tuesday, February 2, 2021 - link

    Enable HT. If not then why not? The battery of tests conducted here and everywhere else have HT enabled. So far, you are still at the apples != oranges stage. It is now time for you to step up or ... :/

    Please post results with HT enabled.
  • Everett F Sargent - Tuesday, February 2, 2021 - link

    Oh and the benchmark application that you are using (e. g. Prime95 or whatever) if you do not mind. Please. TIA
  • HarkPtooie - Wednesday, February 3, 2021 - link

    So: I set all the PL limits to max (4090 W) and reran. 173 W. Up 10-15 W from default.

    Then I enabled HT and reran. 213 W. +40 W compared to non-HT.

    So I turned off the PL tweaking and reran, with HT on. 204 W initially, then after a while it went down to ca 140 W and the multipliers reduced to about 37x.

    Kind of surprised that HT made such a difference, I was under the impression that HT "cores", being a small backpack aside the "real" core, added a tiny percent of transistors overall. I usually disable HT because the software I run don't benefit from them and actually loses performance with it.

    So: mystery solved and I stand corrected.

    Intel is not lying when they call this a 65 W CPU. They are however obscuring the fact that it does so with REDUCED PERFORMANCE. Its default behavior is to only run at 100% for half a minute.

    When allowed by BIOS tweaks, it will double the power draw but run at 100% all the time. This is overclocking in the sense that default settings are overridden - but it is not in the sense that the peak speed is not actually driven above its intended levels. Just maintained at higher power draw.

    Aight. I'm back to non-HT and free power. 173W is not that much.

    Just did a compare of performance during my simulations, and they were more or less identical to the default settings.
  • Qasar - Thursday, February 4, 2021 - link

    it is possible that the Gigabyte B460M DS3H that you are using ( as per a previous post ) could be holding the cpu back as far as overclocking, power usage and such goes. as the B460m doesnt support overclocking by intel, but asus, asrock and msi seems to have found a way to enable overclocking:

    at the same time, though, what asus, asrock and msi have done, isnt really overclocking, but more of allowing the cpu to use its turbo states longer, then what intel allows

    both of those links, could explain, at least partly, HarkPtooie, why you are getting the results you have.
  • Everett F Sargent - Thursday, February 4, 2021 - link

    Yes, I found those links also. Conspicuously absent from all those reports was Gigabyte. But ...

    There you will find ...
    B460M DS3H (rev. 1.0)
    B460M DS3H AC (rev. 1.x)
    B460M DS3H V2 (rev. 1.0)
    (ranked oldest to newest afaik)

    From the manual for the B460M DS3H (rev. 1.0) (page 25) ...

    "Turbo Power Limits
    Allows you to set a power limit for CPU Turbo mode. When the CPU power consumption exceeds the specified power limit, the CPU will automatically reduce the core frequency in order to reduce the power. Auto sets the power limit according to the CPU specifications. (Default: Auto)

    Package Power Limit TDP (Watts) / Package Power Limit Time
    Allows you to set the power limit for CPU Turbo mode and how long it takes to operate at the specified power limit. If the specified value is exceeded, the CPU will automatically reduce the core frequency in order to reduce the power. Auto sets the power limit according to the CPU specifications. This item is configurable only when Turbo Power Limits is set to Enabled. (Default: Auto)

    DRAM Power Limit (Watts) / DRAM Power Limit Time
    Allows you to set the power limit for memory Turbo mode and how long it takes to operate at the specified power limit. Auto lets the BIOS automatically configure this setting. This item is configurable only when Turbo Power Limits is set to Enabled. (Default: Auto)"

    That same language can be found for all three MB manuals. So. it would appear that pl1, pl2 and tau are adjustable as HarkPtooie has suggested (but to be sure the latest bios version should be installed imho).

    The only question I have is, why did Gigabyte apparently update the B460M DS3H (rev. 1.0) to the B460M DS3H V2 (rev. 1.0) (maybe they are different in some hardware way that I have failed to notice).

    The stress test should be the one that produces the highest temperatures together with the best cooling solution possible for these non-K parts. It sounds a bit circular but then these are non-K parts where we constrain the control knobs to just pl1, pl2 and tau.
  • Spunjji - Monday, January 25, 2021 - link

    "If you are going to make wild speculations whose veracity anyone can check, you might want to go over your material a bit better."

    The irony of ending your FUD with this... it's glorious!
  • HarkPtooie - Tuesday, January 26, 2021 - link

    It would be ironic if I were wrong, but I sort of trust my eyes here. And my point was that anyone possessing an i7-10700 and a $20 wattmeter can easily check this too.
  • Spunjji - Wednesday, January 27, 2021 - link

    Good for you, but I don't trust your eyes - not when every objective review available on the internet contradicts you.

Log in

Don't have an account? Sign up now