Intel's push into smartphones over the last 10 years has been well documented, as well as the subsequent downfall after its Broxton smartphone SoCs were cancelled in April 2016. This was not the ‘end’ for Atom in smartphones: an agreement between Intel and Spreadtrum, a low-end SoC vendor based in Asia, kept Intel SoCs going into smartphones for the low-cost market. These chips contained Intel Atom x86 cores, graphics, Spreadtrum modems, and were built in Intel’s fabs.

The two chips to come out of the agreement so far were the SC9861G-IA in 2017, followed by the SC9853i at the end of last year. These chips have most found themselves in Senwa phones, specifically the LS9718 and LS9918 that were launched at Mobile World Congress this year, and are in devices primarily marketed to Latin America and Africa.

The Spreadtrum SC9853i, the latest SoC to come out of the agreement, is actually the lower end unit. It uses eight Intel Airmont cores at 1.8 GHz, a dual core Arm Mali-T820 GPU (down from PowerVR), a 1080p video engine (down from 4K), and a maximum supported camera resolution of 16MP. The modem inside is suitable for up to 4G Cat 7 / 300 Mbps download.

We managed to get hold of the Senwa LS9718 at the show, at the Senwa booth which had a big Intel logo. The booth was fairly devoid of people, or at least, those that were there were not actively engaging with the devices. I only managed to start to have a look around before being pounced on by a Senwa representative from Latin America. He didn’t seem to understand much about what I was doing there as press, and I couldn’t get any more information beyond ‘these are Intel phones’ out of him, but he was happy to stand and watch (at a distance of 6 inches) while I ran a benchmark.

The Senwa LS9718 as a phone is a typical super-midrange phone, with a 5.7-inch HD+ IPS screen in an 18:9 format, with 3 GB DRAM and 32 GB storage, and a battery of 3000 mAh. It felt reasonable to hold, it had a dual camera (16MP + 8MP), a fingerprint sensor, and actually kind of felt like an old Huawei phone to be honest. According to Senwa’s press releases, there was also the LS9918 on the stand featuring the same SoC, but with a more premium 5.99-inch HD+ IPS screen.

The goal of looking at the device was to actually see what I could get out of the SoC underneath. Intel cores in smartphones are, at this point, a relative novelty. It still relies on Android to be compiled for x86 for example, as well as the intricacies of graphics interconnect and all the usual terminology with Arm based-devices but done in the context of Intel’s large x86 mantra.

So here is the one result I managed to get: A score of 22.65 in Jetstream, running on the native browser. The test took around 15-20 minutes to complete, so I was almost pushing my luck if I had asked to download PCMark or something, especially with the Senwa rep basically breathing down my neck. To put that into context with our benchmark data:

JetStream 1.1 (Chrome/Safari)

It is worth noting that the Senwa device was using its native browser, which will lead to some variation. During MWC we also played a bit with the ASUS Zenfone 5, with its Snapdragon 636, an octa-core Kryo 260. That unit scored 45.34 using Chrome in regular mode, and 54.13 in CPU boost mode. Even compared to the results in the graph above, the performance puts the device well below the LG G4, the Samsung Galaxy S5. The Moto Z Play Droid is a Snapdragon 625, an octa-core A53 configuration up to 2.0 GHz, showing that the Atom cores just cannot keep up.

For detailed numbers, click to see the full resolution

Also worth mentioning is that the device started to get very warm to touch. Not uncomfortably so, but the combination of workload and heat soak was noticeable, especially over the 15 minutes it took for the test to run. For a javascript test like JetStream, I really would not expect a device to heat up as much as it did.

Funnily enough, in between MWC and today, Intel and Spreadtrum have agreed to extend their SoC alliance. The two companies are set to work together to develop SoCs integrating Intel’s 5G modems for deployment by the end of 2019. The difference here is that Spreadtrum plan to use Arm CPU cores, rather than Intel x86 cores. As a result, the SC9853i might be the last smartphone SoC with an Atom inside. So despite the new launches of devices from companies like Senwa, it is a rather meagre ending to a smartphone processor line that has been on life support for a while. This deal is also odd, given that Spreadtrum normally deals in the low-end SoC space, while 5G will be a premium addition to begin - either Intel is targeting 5G at the low-end as well, or Spreadtrum is gearing up for a high-end SoC, built on Intel's 14nm.

Sources: The Linley Group, PR Newswire

Related Reading

Comments Locked


View All Comments

  • bji - Wednesday, March 28, 2018 - link

    Clarification: I do know that Microsoft got their OS onto some phones, but what I meant was that "Microsoft had no hope of getting their OS onto a *successful* phone".
  • Alexvrb - Wednesday, March 28, 2018 - link

    I'd love a Snapdragon 845 phone running full Windows, with CShell and WoA. However, the default settings should restrict software installs to Store-obtained apps, and prohibit Win32 programs from running except when docked (admittedly mostly for UI reasons on the second option). Both of those could be overridden by an advanced user, of course. I'd probably put these options on a toggle somewhere so I could lock it down or open it up whenever I wanted.

    But basically there's no problem running "full" Windows as long as the average user is prevented from doing stupid things. Heck even wide open x86 Win10 installs are better in that regard than previous versions. I haven't had to fix either of my parents Win10 machines. Most of what they use is either web-based or available as an app. So they don't need to go hunting on the web trying to download something (and often running into malware in the process). With Win7 and prior, seemed like every couple months I was called in to look at something that was borked. YMMV but that's been my experience.
  • Alexvrb - Wednesday, March 28, 2018 - link

    Oh and if PWAs take off (backed by Google and even Apple as well as MS) then they won't have a problem getting all the must-have apps for a theoretical mobile-capable Windows build. This will be a while down the road though, most existing apps aren't going to be PWA overnight, and demanding apps will need to stay native for the forseeable future.
  • Zeratul56 - Wednesday, March 28, 2018 - link

    What a naive viewpoint, you really think android is significantly more secure than windows? I know windows is patched quite often because I hear my co workers bitch every time there computers take a bit longer to shutdown. On the other hand, most android phones are lucky to even get major OS updates in a timely manor. The krack exploit is still probably in the wild on an alarming high number of android devices. Microsoft had that patched time day it was announced to the public.

    Microsoft's issue was they were always on the outside of phone popularity. They never brought anything to game that the other players weren't already doing. The issues was not lack of care or technology but poor strategy and marketing.
  • bji - Wednesday, March 28, 2018 - link

    Yes, I think that Android is significantly more secure than Windows. I wouldn't trust Microsoft to secure anything. They have proven incompetent at it too many times in the past.

    krack is not much of a security hole. I mean yeah you can, if you try hard enough, maybe you can read some network traffic. Nobody's going to bother to try hard enough though because you have to have physical presence, and if you're really trying to be a bad guy then you'd just mug your target instead of hoping to gather something of value from possibly sniffing some of their network packets.

    It amazes me how people are incapable of assigning severity to security issues. So many people believe every security issue is just as bad as every other one. The windows vulnerabilities that I have personally experienced are all 100x worse than the android krack vulnerability.
  • damianrobertjones - Thursday, March 29, 2018 - link

    ...and I bet that EVERY single Windows user, you know, runs their machine(s) with full Admin access all day long. No wonder they get infected.
  • bji - Thursday, March 29, 2018 - link

    You'd be wrong.
  • Hurr Durr - Thursday, March 29, 2018 - link

    >well curated
    >muh terrible viruses on windoze
  • Elstar - Wednesday, March 28, 2018 - link

    Well, for starters, what could be built with early to late 2000s technology was a huge limiting factor. Back then, phones were slow and RAM poor, and that meant that running a "desktop-class" operating system was out of the question (x86 or otherwise). The fact that the iPhone worked at all in 2007 is because Apple put "OSX" on a gigantic diet just to make it fit into the resources available.
  • hecksagon - Wednesday, March 28, 2018 - link

    LOL could you imagine the quantity of warranty claims providers would get? Literally every single computer issue that has ever existed would turn "mission critical" because their phone is down.

Log in

Don't have an account? Sign up now